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Introduction

In all living organisms, proteins are essential and naturally occurring molecules that have numerous
properties and functions. Proteins are made up of 20 naturally occurring amino acids that are joined
together by polypeptide bonds, forming long chains (Raza, 2017). The arrangement of different
amino acids in specific order determines the three-dimensional (3D) structure and functions of the
protein. Why is a protein’s 3D structure important? The answer to the questions is that a protein’s
biological function is dictated by its 3D structure, that is, the arrangement of the atoms in 3D space.
A protein structure would provide an understanding of how a protein works such as allowing us to
design site-directed mutations to change its function and help us to predict molecules that may bind
to a protein (Alberts, Johnson, & Lewis, 2002).

The structure of the protein is too complex to determine. Its structure has been determined by
structural biologists down to the atomic level. The structure of proteins is usually classified into four
levels, including primary (amino acid sequences), secondary (helices, sheets, turns, coils), tertiary
(3D structures), and quaternary (subunits) (Alberts, Johnson, Lewis, Raff, et al., 2002).
Understanding these four levels is important to understand how proteins get their final shape. The
primary structure comprises an amino acid sequence that makes a polypeptide chain. Although it is
not really a structure, just a sequence of amino acids, however, protein structure depends on this
sequence (Idicula-Thomas & Balaji, 2005). The secondary structure comes from interactions of
amino acids where the polypeptide chain begins to fold into functional 3D form. There are two main
types of protein secondary structures: alpha-helix and beta-sheet. In an alpha-helix, the protein chain
coils into a spiral shape stabilized by hydrogen bonds between the carbonyl oxygen atom of one
amino acid residue and the amino hydrogen atom of another amino acid residue further along the
chain (Egli & Zhang, 2022). In a beta-sheet, the protein chain forms a flat, sheet-like structure with
the amino acid residues arranged in rows, stabilized by hydrogen bonds between the carbonyl oxy-
gen and amino hydrogen atoms in adjacent strands (Kim et al., 2015). The tertiary structure formed
by a polypeptide chain is the overall 3D shape of the protein. The complex 3D tertiary structure is
formed by the interactions between polar, nonpolar, acidic, and basic R groups (Godbey, 2022). In
case the protein loses its 3D shape, it would no longer be a functional protein. The quaternary
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structure refers to the spatial arrangement of multiple protein subunits that come together to form a
larger, functional protein complex. The quaternary structure of a protein is important for its overall
function, stability, and regulation. Many proteins, such as enzymes, receptors, and transporters, exist
as multimeric complexes with distinct quaternary structures (Bhagavan, 2002).

Three-dimensional structure of a protein

The 3D structure of a protein refers to how the amino acid residues that make up the protein are
arranged in 3D space (Ittisoponpisan et al., 2019). The structure of a protein is critical to its func-
tion, and different proteins can result in different biological activities. The 3D structure of a protein
is typically determined using techniques such as X-ray crystallography, NMR spectroscopy, and
cryo-electron microscopy. Once the structure has been determined, it is often deposited in a pub-
licly accessible database, such as the Protein Data Bank (PDB) (Burley et al., 2017). The PDB for-
mat is a standard file format for the representation of protein structures. It includes information
about the amino acid sequence of the protein, the positions of the atoms in the protein, and the
types of bonds and interactions between the molecules. The PDB file can be viewed and analyzed
using various software tools, such as molecular visualization software or computational biology
software (2023).

Understanding the 3D structure of a protein is important for understanding its function. The
structure can help researchers to identify key regions of the protein that are involved in interactions
with other molecules, and to design drugs or other therapies that can target these regions. The struc-
ture can also be used to study the evolution of proteins, as well as to engineer new proteins with
specific functions (Dhanjal et al., 2018).

Computer representations of 3D structure of protein

The 3D structure of a protein can be represented inside a computer using a variety of software tools
(2023). Many different software programs can be used to visualize, manipulate, and analyze protein
structures, and they typically rely on a variety of algorithms and computational methods to repre-
sent the 3D structure of the protein (Schmidt et al., 2014). One common way to represent the 3D
structure of a protein is through the use of molecular visualization software. These programs allow
researchers to view and manipulate the 3D structure of the protein on a computer screen. The soft-
ware typically uses a variety of graphics techniques to represent the protein, including wireframe
models, ball-and-stick models, and space-filling models. These models can be colored and labeled
to highlight specific regions of the protein, such as the active site or a particular domain
(O’Donoghue et al., 2010).

Another way to represent the 3D structure of a protein is through the use of computational biol-
ogy software (2023). These programs use algorithms and mathematical models to analyze the struc-
ture of the protein and to make predictions about its function. For example, computational biology
software can be used to predict the binding affinity of a drug to a particular protein or to model the
effects of a mutation on the protein’s structure and function (Petukh et al., 2015).

In addition to visualizing and analyzing the 3D structure of proteins, computer representations
of protein structures can also be used to store and share data about the protein. The PDB (https://
www.rcsb.org/), for example, is a public database that stores 3D structural data for proteins and
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other biomolecules. The data in the PDB are stored in a standardized file format that can be read
and analyzed using a variety of software tools. Hence, the representation of the 3D structure of pro-
teins inside a computer relies on a combination of computational algorithms, mathematical models,
and graphical techniques. These tools enable researchers to study and understand the complex
structures and functions of proteins in a variety of biological systems (Meier et al., 2015).

Protein structure for machine-learning models

Protein 3D structure is a valuable input for machine-learning models that can be trained to predict
new protein structure, protein function, stability, and interactions using information from the 3D
structure of the protein (Baek et al., 2021). One way to use protein 3D structure for machine-
learning models is through the use of protein structure prediction algorithms. These algorithms use
computational methods to predict the 3D structure of a protein based on its primary sequence.
Once the structure has been predicted, it can be used as input for machine-learning models that can
predict protein function or interactions. Another way to use protein 3D structure for machine-
learning models is through the use of feature engineering. Feature engineering involves identifying
and extracting specific features or characteristics from the protein’s 3D structure that are relevant
to the machine-learning model. For example, features such as solvent accessibility, secondary struc-
ture, and binding pockets can be extracted from the protein’s 3D structure and used as input for the
machine-learning model (AlQuraishi, 2021).

Machine-learning models can also be used to predict the effects of mutations on the protein’s
structure and function. These models can be trained using data from experimentally characterized
mutations and can be used to predict the effects of novel mutations on the protein’s stability, bind-
ing affinity, or enzymatic activity. Hence, the 3D structure of proteins can be a powerful input for
machine learning models to predict protein function, stability, and interactions, as well as to iden-
tify mutations that can lead to disease or that may have therapeutic potential (Pandurangan &
Blundell, 2020).

Generative adversarial networks: a brief overview

A generative adversarial network (GAN) is a deep-learning-based generative model (GM) devel-
oped by Goodfellow et al. (2014). It is a special kind of GM, which learns the GM of data distribu-
tion by applying an adversarial approach via a generator and discriminator. It consists of two
neural networks working in tandem: a generator network and a discriminator network, illustrated in
Fig. 14.1. The generator network creates new data samples while the discriminator network evalu-
ates the authenticity of the generated samples. Both networks are trained together through an adver-
sarial process, with the goal of the generator network learning to create data samples that are
indistinguishable from real data by the discriminator network (Goodfellow et al., 2014). Recently,
they are considered one of the most successful GMs. They are based on game theory as compared
to other GMs, which are mainly based on optimizations. They are designed to solve the GM prob-
lem efficiently due to their ability to generate realistic, high-resolution images. The main applica-
tions of GANs include image generation, video generation, text generation, music generation, data
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FIGURE 14.1

[llustration of GAN model having the capability of generating a synthetic image from priori distribution of input
data. GAN, Generative adversarial network.

augmentation, text-to-image translation, generation of human poses, and 3D-object generation
(Tang et al., 2021). Besides that, GANs also have wide applications in medical image processing
and biomedical informatics (Raza & Singh, 2021; Singh & Raza, 2021). In other words, GANSs can
be used to create new, realistic-looking images or videos, generate realistic text or music, and cre-
ate larger datasets for training other machine-learning models (Shahriar, 2022).

Unlike other unsupervised models, GANs are trained by a competitive game between two net-
works, a generator (G) that tries to map a random selection z, from a distribution, P,(z) such as
Gaussian noise, to the distribution of a class of data G(z) (e.g., an instance of real images); and a
discriminator (D) whose job it is to determine whether the generated images are real or fake, that
is, whether they belong to the real distribution P g,y or not. The initial objective function used for
training the generator and discriminator is represented by the mathematical equation given below,
which is formulated by Goodfellow et al. (2014).

min max V(D, G) = Ey ~ ., [106D(,)] + Ex,<p o1 ~ 10gD(G)] (14.1)

The differentiable loss function is trained through stochastic optimization. This initial GAN
objective suffers from problems, such as mode collapse, vanishing gradient, problems with count-
ing, and instabilities during training, despite the fact that it is straightforward. The Wasserstein
GAN is a well-known extension of basic GAN that extends an alternative training scheme to the
generator model and replaces the probabilistic discriminator with a critical score that realizes that
the model is stable, faster, and reliable for training (Kurach et al., 2019).

There are several types of GANs, including conditional GANs, progressive GANs, CycleGAN:S,
and InfoGANSs. Conditional GANs allow the generation of samples conditioned on a specific input,
while progressive GANs improve the quality of the generated samples over time. CycleGANs
(Sandfort et al., 2019) enable the generation of samples in a different style or domain, while
InfoGANs (Chen et al., 2016) aim to learn disentangled representations of the input data.

GANS can also be used for generating protein and drug ligand structures. In this case, the gener-
ator network is trained to produce novel molecular structures that meet specific criteria, such as
having a certain biological activity or being structurally similar to known compounds. The discrimi-
nator network evaluates the generated structures based on their chemical properties, such as their
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solubility or binding affinity, to ensure that they are chemically valid. This approach has the poten-
tial to accelerate drug discovery by generating novel compounds with specific biological activities,
which can then be synthesized and tested in the lab. However, it is important to note that the gener-
ated compounds still need to be validated through experimental testing, as GANs are not able to
fully capture the complexity of biological systems (Gupta et al., 2018; Polykovskiy et al., 2018).

Machine learning in protein and ligand structure prediction

Protein structure prediction using Machine Learning involves developing algorithms that can pre-
dict the 3D structure of a protein and ligands based on complex multidimensional amino acid
sequences and other relevant data. This is a challenging task due to the complexity of the problem
and the substantial number of structures. Several types of Machine-Learning algorithms, such as
deep residual networks (He et al., 2016), Attention networks (Vaswani et al., 2017), and various
forms of GANs (Singh & Raza, 2021) have been used to tackle this problem. These algorithms
learn from large datasets of known protein structures and use this knowledge to predict the structure
of new proteins. However, the accuracy of these predictions is still limited, and improving it
remains an active area of research in computational biology. Recently, several GAN-based
approaches have been developed and have shown promising results in predicting protein structures.
In this section, we are going to discuss some of the potential deep learning models that achieved
state-of-the-art results.

AlphaFold

AlphaFold (https://www.nature.com/articles/s41586-021-03819-2) is a deep learning-based method
developed by the DeepMind team. It uses a neural network to predict the 3D structure of a protein
sequence. AlphaFold has been widely recognized for its high accuracy and was used to predict the
structures of more than 350,000 proteins in the PDB in 2021.

RoseTTAFold

RoseTTAFold (https://www.science.org/doi/10.1126/science.abj8754) is another deep learning-
based method for protein structure prediction. It was developed by a team of researchers from the
University of Washington and uses a neural network that combines information from multiple
sources, including evolutionary information and protein residue-residue contacts, to predict the 3D
structure of a protein.

RaptorX

RaptorX is a protein contact map prediction system based on deep residual networks. Wang et al.
(2016) use a combination of template-based modeling and machine-learning methods to predict
proteins’ secondary and tertiary structures, distance, and contact maps by concentrating on the fun-
damental issue of transforming coevolutionary inputs into practical geometric constraints (Wang
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et al., 2016). The key innovation of RaptorX is its use of two deep residual neural networks, the
first one-dimensional (1D) residual network performed a series of convolutional transformations of
1D sequential features. By using outer concatenation, the output of this 1D network is transformed
into a two-dimensional (2D) matrix and input into the second module. The second module is a 2D
residual network that transforms its input through several 2D convolutional operations. To estimate
the pairwise distances between amino acids in a protein and the protein’s 3D structure, the predictor
module employs a deep neural network. RaptorX’s deep neural network was able to discover com-
plex correlations between amino acid sequences and protein structures since it was trained on a
substantial dataset of protein sequences and structures. RaptorX has been utilized in numerous
research to predict the structures of proteins with significant biological roles in addition to having
high accuracy on protein structure prediction benchmarks. RaptorX was employed, for instance, in
recent work to forecast the structure of the SARS-CoV-2 spike protein (Barbhuiya & Ahmad, n.d.;
Jaimes et al., 2020) that is essential for virus entrance into host cells. The predicted structure
offered insights into the mechanism of virus penetration and was shown to be in strong accord with
experimental findings. Overall, RaptorX is a powerful protein structure prediction system that has
been widely used in the scientific community.

SPARKS-X and SVM-fold

SPARKS-X is a protein structure prediction server that uses an SVM-based method to predict the
3D structure of a protein. The method combines sequence- and structure-based features to make its
predictions (Yan et al., 2021).

CONFOLD and SPOT-ROD

CONFOLD is a protein structure prediction server that uses a random forest-based method. The
method combines multiple sources of information, including coevolutionary information, to predict
the 3D structure of a protein (Stansfield et al., 2018).

PEP-FOLD and CONFOLD

PEP-FOLD is a protein structure prediction server that uses a Bayesian-based method to predict the
3D structure of a protein. The method combines a variety of sources of information, including sec-
ondary structure prediction, solvent accessibility prediction, and homology modeling (Adhikari
et al., 2018).

Rosetta and MODELLER

Rosetta is a software suite developed by the University of Washington that uses computational
algorithms to predict the 3D structure of a protein (Leaver-Fay et al., n.d.). It utilizes a combination
of physics-based energy calculations and machine-learning techniques to generate accurate protein
structures. Rosetta can be used to predict the structure of proteins from scratch or to refine existing
models. It is also capable of predicting protein—protein and protein—ligand interactions.
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MODELLER, on the other hand, is a software package developed by the University of
California, San Francisco, that uses comparative modeling techniques to generate protein structures
(Webb & Sali, 2016). Comparative modeling involves building a protein model based on the known
structure of a homologous protein. MODELLER utilizes a number of different algorithms to gener-
ate accurate models, including molecular dynamics simulations, energy minimization, and optimi-
zation of various structural parameters. It is particularly useful for modeling large proteins and
protein complexes. Rosetta and MODELLER have been widely used in protein structure prediction
and have contributed significantly to our understanding of protein structure and function. However,
each software package has its own strengths and weaknesses, and researchers often use a combina-
tion of different methods to generate the most accurate protein structures.

Generative modeling for protein and ligand structures

Generative modeling is capable of learning the combined distribution of protein and ligand confor-
mations that further enables principled sampling of diverse conformations and gives important
insights into their ensemble attributes. Several GMs, as given below, have been used for protein
design with their own limitations and trade-offs.

Autoregressive models

In autoregressive models, the outcome of the next token in textual data depends on its previous
tokens. Likewise, protein sequences are taken as tokens using autoregressive models. Considering
this, Alley et al. (2019) proposed protein sequences through recurrent neural networks (RNNs) and
long short-term memory layers to predict the sequences of amino acids using the previous amino
acid sequences. Ingraham et al. (2019) introduced Structured Transformer that follows an enco-
der—decoder architecture. The role of the encoder layer is to take the protein structure as input.
The decoder is responsible for giving the amino acid sequences and self-attention to the preceding
residues as output. Strokach et al. (2020) developed ProteinSolver that is based on a graph neural
network. It generates novel sequences that refer to the stable proteins and desired topologies. It is
better than transformers in terms of protein stability and affinity prediction.

Variational autoencoders

It consists of an encoder—decoder network, wherein the former is used to map the inputs to a low-
dimensional hidden space and later is used to reconstruct those inputs by utilizing the sample from
that low-latent space. Variational autoencoders (VAE) is applied for novel protein sequence genera-
tion by leveraging predetermined functions. In this direction, Greener et al. (2018) trained a condi-
tional VAE, wherein a rough topology of the protein is considered as input with about 4000 short
monomeric structures with their homologs. As a result, new protein sequences related to a specified
topology are generated. Eguchi et al. (2020) considered a distance matrix as input and generated
3D coordinates using VAE. They have observed that the input matrix and the torsion angles are
matched for a particular protein structure.
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Normalizing flows

It learns a mapping between the inputs and the hidden representation in bidirectional mode. The
modeling of protein dynamics is one of the most important applications of normalizing flows (NFs)
with respect to protein design. Noé et al. (2019) developed Boltzmann generators that use a set of
protein conformations and energies. It generates new conformations via molecular dynamics simu-
lations and performs model transitions and energy differences.

Energy-based models

They have been applied to learn semantic representations of protein sequences and structures.
Gainza et al. (2020) proposed a model called MaSIF. It is trained to map protein surface
meshes into fingerprints to perform protein—protein interaction prediction. It is observed that
protein docking has done significantly better than traditional approaches with respect to accu-
racy values.

Generative adversarial networks

It is considered a subset of energy-based models (EBMs). GANs are used to generate distance
matrices and new protein sequences using folds and functions. Considering this, the existing
method represents novel protein folds using GANs. Repecka et al. (2021) trained a GAN model on
the malate dehydrogenase (MDH) sequences dataset. LIGANN (Skalic et al., 2019) is a structure-
based de novo drug design tool, wherein for an input protein shape, a GAN gives complementary
ligand shapes in a multimodal way. Anand and Huang (2018) trained a GAN model to generate dis-
tance matrices for novel protein folds. It consisted of 2D layers. Qiao et al. (2022) proposed
NeuralPLexer, a deep GM framework. It is used for protein-ligand complex structure prediction.
The fluctuation in it is measured via a protein backbone template and molecular graph inputs.
Recently, Song et al. (2023) proposed DNMG, which is an amalgamation of deep GAN and transfer
learning and provides a better binding ability to the target proteins.

Generative adversarial networks in protein and ligand structure
generation: a case study

Case Study #1:GANSs for generating protein structures (Anand & Huang, 2018).

There are various traditional methods for predicting the 3D structure of a protein, such as
homology modeling and energy-based methods, but they do not produce accurate results.
Anand and Huang (2018) use generative modeling for protein structures, which propose the use
of GMs such as GANs and VAEs as promising alternative approaches. Anand and Huang
(2018) then present several case studies that demonstrate the potential of GMs for protein struc-
ture prediction. They show how GANs and VAEs can be used to generate realistic protein
structures with novel folds, and how these models can be used to improve the accuracy of exist-
ing protein structure prediction methods. They introduced a convex formulation to recover
corruption-robust 3D structures from generated pairwise distance maps using the alternating
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direction method of multipliers (ADMM). The authors utilized a deep convolutional GAN
(DCGAN) as their GM. The PDB, an online repository of experimentally determined structures,
was considered. The 3D structures were encoded to pairwise 2D distances between a-carbons
on the protein backbone. Once the pairwise distance maps are generated, recovering or folding
the corresponding 3D structure is required. The best way to do this is by using the ADMM
algorithm (Anand & Huang, 2018). The protein structure data representation, working pipeline,
and used DCGAN model architecture are shown in Fig. 14.2.

Case Study #2:ProteinGAN: A GM that learns natural protein to generate protein sequences
under biological constraints (Repecka et al., 2021).

Proteins are essential molecules that carry out many functions in living organisms.
However, there are still many unknown protein sequences that could potentially have important
functions. The authors in this work proposed ProteinGAN to generate novel protein sequences
that are likely to have functional properties, this is specially designed for learning patterns of
amino acids in biological sequences. It is difficult to determine the merit of the artificially gen-
erated sequences or structures, that is, whether the created sequence reflects a natural protein
contrary to the synthesis of images or music-related data. So, we checked to see if ProteinGAN
(illustrated in Fig. 14.3) could replicate key sequence characteristics found in the MDH protein
family.

The ProteinGAN model consists of two separate modules of specialized neural networks: a gen-
erator that generates fake data samples, and a discriminator that tries to distinguish between actual
and artificially generated data. Both of the neural networks use ResNet blocks (He et al., 2016)
with specialized configurations. In addition to ResNet, there are three 1D convolution layers with a
filter size of 3, and leaky ReL.U activations function were present in each block of the discriminator
while a residual block of generator contained two transposed convolutional layers for upsampling
and one convolution layer with similar filter size and activation function (Barbhuiya et al., 2022).
In addition, one self-attention layer with each network calculates the loss with R1 regularization
and implements spectral normalization in all layers to ensure the stable training of the network
(Ahmad et al., 2023). Training these networks together with the ratio 1:1 step using Adam opti-
mizer to optimize both of the networks. To evaluate the performance of protein GAN, generated
sequences during training were validated with the BLAST dataset and various scores like standard
deviation (SD) of the discriminator layer.

Training data: The dataset of 16,898 MDH sequences was obtained (Bateman, 2019), after fil-
tering the sequence with the criterion that the sequence length of the amino acids or noncanonical
acids should be less or equal to 512 sequences. In this experiment, a total of 16,706 natural
sequences were used for training and the remaining 192 sequences were used for the validation set.

The proposed work performed the following approach to analyze the generated sequence:

Multiple sequence alignment (MSA): They created MSA by combining equal numbers of syn-
thetic and natural datasets. The Shannon entropy used to measure the alignment of natural and gen-
erated sequences as

20
SE= =Y p(x)logyp(x;) (14.2)
i=1

Where p(x;) represents amino acid sequence frequency.
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(A) Data representation. Proteins consist of chains of amino acids and have their secondary structure
conformation such as alpha helices, beta sheets, turns, and coils. Protein structures were represented to
pairwise distance matrices. (B) Working Pipeline. A pairwise distance matrix is generated by a GAN, which is
“folded” into a 3D structure by the ADMM algorithm to get a-carbon coordinate positions. Structures were
folded directly using pairwise distances using Rosetta. (C) Model. The architecture of the DCGAN that generates
pairwise distance maps. Here, the generator takes in a random vector z « N (0, 1) and gives a fake distance

map as an

output to fool the discriminator. Further, the discriminator predicts whether inputs are real or fake.
Adopted from Anand and Huang (2018).
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(A) lllustrate the training scheme of the proteinGAN model, (B) showcase the visual comparison between
natural MDH sequences and amino acid distribution that are accurately captured by ProteinGAN. Shannon
entropies are used to express sequence variability for synthesized and training data derived from MSA. Here,
high entropy suggests substantial amino acid variety at a particular site, and low entropy indicates high
similarity and consequently functionally relevant locations. GAN, Generative adversarial network; MDH,
malate dehydrogenase; MSA, multiple sequence alignment.

Correlation matrices: For each potential pair of amino acids in a sequence, an amino acid pair
correlation matrix was constructed and normalized over the entire dataset. The correlation value is

represented as
_ pnla,b) — pu(a, Rand(b))

Zn(a,b) = (14.3)
Upm (a,Rand(b))
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The average and SD of the same amino acid pair’s arbitrarily generated sequence correlation
score is given as oy, (a,Rand(b)) ANd  p, (a,Rand(v))> TESPECtively. The correlation function for scoring
was calculated as minimum range capability:

1< .
pm(a,b):;;mmj:l ....... [ = yi] (14.4)

Here, the nearest occurrence of amino acid (b) at the place of y; is found for each position x;
of amino acid (a), and the average distance between the pairings is determined.

Instead of the above approach for analyzing generated sequences, here, multiple strategies are
adopted to validate the synthetically generated sequences. Sequence clustering uses MMseq2 to
normalize the dataset and generate validation set data. Domain search for all generated sequences
to classify each representative cluster and domain diversity controls like checkpoint introduced to
analyze generated sequences. Throughout ProteinGAN, equivalent controls were created by ran-
domly selecting 64 sequences at each fixed training step.

Overall, the result in this paper demonstrates that the generated MDH sequences in different clus-
ters 45%—98% of amino acids are in functional positions when experimentally tested and validated
in in vitro conditions. In a comparison of the discriminator, the decision with the self-attention layer
improved by 66% to distinguish the position of amino acids in natural and synthetic sequences.

Case Study #3: GAN-based protein secondary structure prediction (PSSP).

Proteins are significantly important in human life activities. The functional mechanism of a pro-
tein relies on its 3D structure. In a living cell, it is done via protein sequence and folding activities.
However, the 3D structure of a protein is generally received using X-ray, magnetic resonance, etc.,
which are expensive, slower, and available by PPDB. Considering this, it is important for research-
ers to consider 3D structures of protein prediction using faster sequences and at less cost. The pro-
tein secondary structure maintains the gap between 3D structures and sequences, and that is
decided by the effect of hydrogen bonds available in the polypeptide chain. In this direction, exist-
ing relevant studies emphasize that 3D structures can be learned using their secondary structures
and it improves the overall accuracy of 3D-structure prediction.

Levitt and Chothia (1976) introduced the PSSP which consists of three stages. The methods
used in the first stage depend on the statistical probability of the individual residue. The second
stage considers the neighboring residue information of the protein. It is done using a sliding win-
dow. Finally, the third stage uses MSA profiles for PSSP to increase prediction accuracy. Earlier,
the secondary structures of a protein referred to helix, strand, and coil as three states. Later, it is
extended to eight states to explain proteins in more detail with respect to the local structure infor-
mation. Considering this, earlier methods give a better prediction on three states but perform poorly
for eight states due to the increased complexity at the local level. In this line, several neural-
network methods are taken into consideration for eight-state prediction like RaptorX (Wang et al.,
2016) and deep convolutional and RNN (DCRNN) (Li & Yu, 2016).

Recently, deep learning has gained popularity over traditional methods due to its immense clas-
sification accuracy. Also, in PSSP, the eight states have received impressive prediction accuracy
using deep neural networks. Moreover, GANSs, a deep learning-based GM have achieved better per-
formance. It is quite effective to extract features and perform signal reconstruction using GAN. It is
mainly used in image generation and classification problems. In this line, Jin et al. (2022) introduce
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the conditional GAN-based PSSP (CGAN-PSSP) model, a new novel PSSP model. It predicts pro-
tein secondary structures using both three and eight states. This study describes generative adversar-
ial learning achieved using GAN as quite effective for protein structure prediction in PSSP. In
CGAN-PSSP, the role of the generator is to predict the secondary structure of proteins. It is
achieved by giving input in terms of the position-specific scoring matrix and protein sequences.
The generator learns the complex features of protein sequences. On the other hand, a discriminator
conflicts with the generator. Besides that, a new multiscale convolution (MSC) is introduced, which
has a modified improved channel attention (ICA) module. It is used to generate the secondary
structure. The role of MSC is to extract the features of protein sequences. The proposed ICA mod-
ule is added to the MSC classification modules for the proposed module to automatically recognize
several functional channels.

The training of the proposed model is done on Nvidia’s Titan RTX GPU, implemented in Keras
(a popular neural network library). Mish and Softmax activation functions, MSRA for weight ini-
tialization, and Adam as optimizer are used in the proposed model. In this study, four publicly
available datasets—CB513 (Cuff & Barton, 1999), CullPDB (Wang & Dunbrack, 2003), CASP10
(Kryshtafovych et al., 2014), and CASP11 (Moult et al., 2014) are considered. The CullPDB data-
set is further split into training, validation, and testing in terms of sequences, while rest three data-
sets are used for testing the proposed model. Jiang et al. (2017) proposed the Q-score, which
measures the correctly identified amino acid residues in terms of percentage. It is taken as an evalu-
ation metric for empirical evaluation of the proposed model in terms of accuracy values of residues
in three and eight states. The experimental results show that the proposed methods perform signifi-
cantly better as compared to the traditional models. Moreover, the proposed MSC and ICA modules
also show significant performance. Furthermore, the experimental results reveal that the GAN-
based method remarkably minimizes the dependency of the training dataset in the proposed model
as compared to other training dataset-dependent methods that are generally hard to collect due to
their limitations.

In this study, the authors consider that the structure of GAN is very effective for the perfor-
mance of PSSP tasks. However, they also mention that there is further scope for improvement in
GAN-based PSSP. The authors highlight that the ability to learn features and pattern classification
of adversarial learning is quite effective and fits the problem. They also emphasize that the consid-
eration of GAN in image generation tasks is an important investigation problem on PSSP.

14.6 Conclusion

The applications of GAN and other GMs for protein and ligand structure prediction have shown
great promise in the field of computational biology and bioinformatics. These models have the
potential to generate novel protein and ligand structures, improve the accuracy of existing structure
prediction methods, and aid in drug discovery. While there are still challenges that need to be over-
come, such as the need for larger and more diverse datasets, advances in generative modeling tech-
niques and computing power continue to push the boundaries of what is possible in protein and
ligand structure prediction. Moreover, the applications of GAN and other GMs have expanded
beyond the prediction of individual structures to include the generation of entire protein—protein
and protein—ligand complexes, which has important implications for drug discovery and design.
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Hence, GMs for protein and ligand structure prediction are a rapidly evolving research area with
significant potential for advancing our understanding of protein and ligand structures and their role
in biological processes.

There are several exciting future research directions in the field, a few possibilities are as
follows:

Development of new GMs: While GANs and VAEs have shown promise in protein and ligand
structure prediction, there is still room for the development of new and improved GMs that can bet-
ter capture the complexity and diversity of protein and ligand structures.

Integration with experimental data: The incorporation of experimental data such as NMR spec-
troscopy, X-ray crystallography, and cryo-EM can provide valuable constraints for GMs and
improve their accuracy.

Applications to larger systems: The current applications of GAN and other GMs for protein and
ligand structure prediction have mostly focused on individual structures or small complexes. Future
research could explore the generation of larger systems such as protein—protein complexes or entire
cellular pathways.

Impact on drug discovery: GMs have the potential to revolutionize drug discovery by generating
novel ligand structures that can be used as starting points for drug design. Future research could
focus on the use of GMs to generate ligands with specific properties or to optimize existing
ligands.

Exploration of GMs in other areas of translational bioinformatics: The applications of GMs are
not limited to protein and ligand structure prediction. Future research could explore the use of these
models in other areas of translational bioinformatics such as gene expression prediction, protein
folding, drug toxicity prediction, medical image and signal processing, synthetic DNA sequences
generation, and patient-specific models generated to predict treatment outcomes in personalized
treatment settings, and so on.
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