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Abstract
Sarcasm detection has been a well-studied problem for the computational linguistic researchers. However, research related 
to different categories of sarcasm has still not gained much attention. Self-Deprecating Sarcasm (SDS) is a special category 
of sarcasm in which users apply sarcasm over themselves, and it is extensively used in social media platforms, mainly as 
an advertising tool for the brand endorsement, product campaign, and digital marketing with an aim to increase the sales 
volume. In this paper, we present a deep learning approach for detecting SDS on Twitter. We propose a novel Convolution 
and Attention with Bi-directional Gated Recurrent Unit (CAT-BiGRU) model, which consists of an input, embedding, 
convolutional, Bi-directional Gated Recurrent Unit (BiGRU), and two attention layers. The convolutional layer extracts 
SDS-based syntactic and semantic features from the embedding layer, BiGRU layer retrieves contextual information from 
the extracted features in both preceding and succeeding directions, and attention layers are used to retrieve SDS-based 
comprehensive context representation from the input texts. Finally, sigmoid function is employed to classify the input texts 
as a self-deprecating or non-self-deprecating sarcasm. Experiments are conducted over seven Twitter datasets to evaluate the 
proposed (CAT-BiGRU) model using standard evaluation metrics. The experimental results are impressive and significantly 
better than many neural network-based baselines and state-of-the-art methods. In this paper, we have highlighted biologically 
inspired and psychologically motivated basis of the proposed approach to examine its affective capabilities with respect 
to SenticNet. The efficacy of the proposed model is evaluated on two SenticNet-based sentic computing resources—Amazon 
word embedding and AffectiveSpace. Based on the experimental results, we conclude that deep learning-based approaches 
have potential to detect SDS in social media texts accurately.
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Introduction

Twitter  is a prevalent micro-blogging service and 
provides a platform to express views, ideas, emotions, 
and sentiments about the events that are happening in the 
real-world. A registered user on Twitter can post messages 
(aka tweets) up to a maximum of 280 characters. Since the 
beginning, Twitter’s user base is increasing exponentially, 
and it has become a substantial fact-finding source due 
to the presence of the huge amount of user-generated 

contents. Thus, tweets have become beneficial for many 
purposes, such as product endorsement, e-governance, 
open-source intelligence, election result prediction, 
opinion mining, sentiment analysis, Web surveillance, 
and cyber-security.

Tweets are generally precise, short, and informal, 
and they contain non-literal expressive words, bashes, 
grammatically incorrect words, unstructured phrases, 
and slangs. However, these syntactically imprecise 
and informal tweets are morphologically rich, and 
their computational analysis is advantageous to meet 
the aforementioned purposes. On the other hand, the 
informal and non-literal contents available on Twitter in 
the form of tweets include several categories of figurative 
language, such as sarcasm, irony, humor, etc., and their 
detection is crucial for many real-life applications like 
opinion mining and sentiment analysis [1].

 *	 Muhammad Abulaish 
	 abulaish@ieee.org

1	 Department of Computer Science, Jamia Millia Islamia (A 
Central University), New Delhi, India

2	 Department of Computer Science, South Asian University, 
New Delhi, India

/ Published online: 23 January 2021

Cognitive Computation (2022) 14:91–109

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1 3

Twitter and the Sarcasm Detection Problem

Since beginning, it has been found that user-generated 
contents on the Web are easily understandable by 
humans, but difficult for the machines to process it 
automatically [57]. Over the years, the enormous 
growth of unstructured and varied data has taken the 
form of big data. It is generated at an unprecedented 
rate over Online Social Networks (OSNs), and the 
accurate distillation of knowledge from such data has 
become an extremely challenging task [45]. Due to these 
reasons, researchers are giving tremendous emphasis on 
community detection problem [58]. Besides that, because 
of the rapid increase in human-computer interaction over 
OSNs, research problems of various interdisciplinary 
sciences are shifted towards computer science as well 
[2]. Figurative language is one of such problem, which 
is derived from the field of linguistics, psychology, 
and cognitive sciences, and now found in OSNs on a 
very large-scale [3]. Moreover, sarcasm is one of the 
most prominent categories of figurative language that 
is found over OSNs, especially on Twitte. According to 
the Macmillan English dictionary1 sarcasm is defined as 
”the activity of saying or writing the opposite of what you 
mean, or of speaking in a way intended to make someone 
else feel stupid or show them that you are angry”. Users 
post sarcastic tweets through scornful, ridicule, harsh, 
and tease associated words or phrases. The sentiment is 
always linked with sarcasm where profound emotion is 
articulated [46]. Due to this reason, existing sentiment 
analysis and polarity recognition systems are highly 
affected due to the presence of non-literal expressions 
and implicit meanings in sarcastic texts [4]. Self-
Deprecating Sarcasm (SDS) is a special category of 
sarcasm2 in which users completely refer themselves, 
and execute sarcasm using deprecated, undervalued, 
disparaged, or criticizing words and phrases. Formally, 
SDS3 is defined as a ”sarcasm that plays off of an 
exaggerated sense of worthlessness and inferiority”. 
Figure 1 presents an exemplar tweet representing SDS 
in which a user has referred and deprecated to herself.

Why Self‑Deprecating Sarcasm?

Over the last few years, due to growing interest of social 
media marketing, various commercial tools have been 
developed [49], and automatically capturing the users’ 
sentiments through marketing campaigns and product 

preferences have raised interest in both the scientific 
community and the business world. In this line, affective 
computing and sentiment analysis areas play a crucial role 
[44]. Self-deprecating is one of the marketing campaign 
strategies to capture users’ sentiments. Self-deprecating 
contents are mainly used for brand endorsement and product 
campaigning so that the sales volume can be scaled up [6]. 
Such contents enhance self-promotion marketing, and they 
improve the product-consumer relationship and create a 
place among the consumers. Moreover, self-deprecating 
contents are structured in such a way that a brand accepts 
flaws without affecting its brand value. Besides OSNs, self-
deprecating contents are also seen in celebrities’ interviews 
as well as in politicians’ speeches [6]. Stieger et  al. [5] 
considered sarcasm as aggressive humor. Interestingly, self-
deprecating contents are composed using sarcasm and humor 
to express oneself down. The main purpose behind the use 
of SDS is to intensify self-deprecating marketing strategies 
for various purposes, such as brand endorsement, product 
campaign, digital and content marketing, and e-advertising to 
excel the sales volume. Figure 2 presents an exemplar SDS-
based advertisement, wherein Converse, an American shoe 
company, expresses SDS advertisement using the phrase 
shoes are boring to promote their new sneakers shoes.

Our Contribution

As stated earlier, SDS is a special category of sarcasm where 
users apply sarcasm to themselves. On analyzing the tweets 

Fig. 1   An exemplar tweet representing self-deprecating sarcasm

Fig. 2   A self-deprecating sarcasm-based advertisement

1  https​://bit.ly/2WsUk​Uk (last accessed on Dec. 03, 20)
2  https​://bit.ly/34n06​rx (last accessed on Dec. 03, 20)
3  https​://bit.ly/3qmxJ​F9 (last accessed on Dec. 03, 20)
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of multiple datasets used in this study, we have the following 
observations:

–	 There are several tweets in which users refer themselves. 
Such tweets are called self-referential tweets.

–	 All sarcastic or non-sarcastic tweets need not be self-
referential.

–	 A self-referential tweet can be considered as a SDS, if it 
is sarcastic in nature.

This paper is an extension of one of our previously 
published conference papers [7] by conducting 
experiments over six benchmark datasets, additional 
pattern-based regular expression queries, inclusion 
of a new model called Convolution and Attention with 
Bi-directional Gated Recurrent Unit (CAT-BiGRU) 
based on deep learning techniques, addition of a detailed 
analysis of the experimental findings and comparison 
with many neural network baselines and state-of-the-art 
methods. The main idea behind the CAT-BiGRU model is 
to retrieve contextual representations from the candidate 
self-referential tweets to detect SDS. Incongruity using 
contextual representation plays an important role in 
sarcastic texts [8]. Since a self referential tweet can be 
considered as SDS only if it has sarcastic attributes, 
extracting such contextual representation helps to detect 
SDS accurately.

Each candidate self-referential tweet is converted into a 
self-referential input vector and passed to the pre-trained 
word embedding layer. Thereafter, output generated from 
the embedding layer is provided to a convolution, fol-
lowed by a Bi-directional Gated Recurrent Unit (BiGRU), 
and two attention layers. The convolutional layer extracts 
SDS-based syntactic and semantic features at different 
positions of the input embedding vector using one-dimen-
sional convolutional filters. As a result, low-level features 
from the high dimensional pre-trained embedding vector 
are extracted. These features are semantically robust and 
abstract, and they also reduce the overall dimensions of 
the candidate self-referential tweets. The BiGRU layer 
extracts contextual information-based sequences from the 
extracted features of the convolutional layer. BiGRU rep-
resents actual semantics using the contextual information 
which is significantly better than a simple Gated Recur-
rent Unit (GRU). It consists of both forward and backward 
directions, where preceding and succeeding contextual 
information sequences are extracted from the forward and 
backward directions, respectively. There are two atten-
tion layers used in our proposed CAT-BiGRU model, 
which provide distinct attention in terms of the distri-
bution of weights to the contextual information-based 
variable-length sequences retrieved from the forward and 

backward directions of BiGRU for context representa-
tion. Finally, a comprehensive context representation is 
obtained by concatenating the outcomes of two attention 
layers, and it is forwarded to a sigmoid activation function 
to classify a candidate self-referential tweet as either SDS 
or Non-Self-Deprecating Sarcasm (NSDS).

In short, the main contributions of this paper can be sum-
marized as follows.

–	 Exploring a novel SDS detection technique for textual 
data (tweets) with an aim to enhance SDS-based market-
ing strategy.

–	 Implementation of a filtration technique to identify can-
didate self-referential tweets from the datasets. The main 
intent behind this filtration is to remove all those tweets 
from the datasets that can never represent a SDS.

–	 Development of a deep learning-based CAT-BiGRU model 
for detecting SDS on Twitter.

–	 Generating a new Twitter hashtag-based annotated data-
set for SDS detection tasks.

The rest of the paper is organized as follows. Section 2 
presents a brief review of the state-of-the-art computa-
tional techniques for sarcasm detection. Section 3 presents 
an overview of the proposed approach. It also presents a 
description of the filtration module to identify candidate 
self-referential tweets and functional aspects of our pro-
posed CAT-BiGRU model. Section 4 presents the data-
sets, experimental settings, evaluation metrics, and experi-
mental results. It also presents a comparative analysis of 
the proposed approach with many neural network-based 
baselines and state-of-the-art methods. Section 5 presents 
an important discussion to analyze the effect of the CAT-
BiGRU model on different embedding dimensions, param-
eters, and sentic computing resources. Finally, Section 6 
concludes the paper with future directions of research.

Related Work

This section presents a detailed survey of various state-of-
the-art techniques based on machine learning, deep learning, 
and other (i.e., rule- and linguistic-based) approaches for 
sarcasm detection. Besides that, we have also highlighted 
the current status and limitations of the existing methods.

Machine Learning‑Based Approaches

Sarcasm detection can be considered as a binary 
classification task [9]. González-Ibáñez et  al. [10] 
considered lexical (interjections and punctuations) and 
pragmatics (smiley, frowning faces, etc.) factors to identify 
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sarcasm in tweets. They considered unigram, dictionary-
based lexical and pragmatic features, and applied Logistic 
Regression (LR), Sequential Minimal Optimization (SMO), 
and Support Vector Machine (SVM) techniques for sarcasm 
detection. They noticed that SMO provides better results 
in comparison to LR. Lukin and Walker [11] considered 
forum post from “Internet argument corpus”. They applied 
a bootstrapping technique to identify sarcasm and nastiness, 
and trained high precision classifiers based on both sarcasm 
and non-sarcasm posts. As a result, a large labeled dataset 
is generated to train different classifiers. Rajadesingan et al. 
[12] proposed a behavior modeling-based approach and 
diagnosed historical tweets for sarcasm detection. They 
considered text expression-, emotion-, contrast-, familiarity-, 
and complexity-based features and applied Decision Tree 
(DT), SVM, and LR classifiers. Bouazizi and Ohtsuki 
[1] considered a pattern-based approach for tweets. They 
extracted sentiment-, punctuation-, syntactic-, sematic-, and 
pattern-based features and used Naïve Bayes (NB), SVM, 
and maximum entropy classifiers for sarcasm detection.

Apart from supervised techniques, semi-supervised-
based techniques are also considered in few studies. Tsur 
et  al. [13] considered a semi-supervised technique for 
sarcasm identification. They considered three feature 
sets involving syntactic, patterns, and punctuations. They 
identified a large set of patterns from frequent words available 
on Amazon dataset. Davidov et al. [14] followed the same 
approach as [13] for analyzing Twitter and Amazon product 
reviews. Recently, we proposed the first computational study 
on SDS detection task in [15], and highlighted different 
categories of sarcasm. In [15], we applied a rule-based 
approach to detect candidate self-around tweets, and identified 
various self-deprecating and hyperbolic features. Finally, we 
applied DT, NB, and bagging classifiers for detecting SDS.

Deep Learning‑Based Approaches

In the last few years, deep learning-based approaches are 
broadly applied in numerous Natural Language Processing 
(NLP) problems [48], including the sarcasm detection task. 
Schifanella et  al. [16] proposed sarcasm detection task 
in multimodal platforms, including  Twitter,  Instagram, 
and  Tumblr  on visual and textual components. They 
applied deep Convolutional Neural Network (CNN) and 
SVM, and considered lexical, subjectivity, n-grams, and 
visual-semantics features. Amir et  al. [17] considered 
CNN to learn user- and utterance-based embeddings. They 
extracted contextual features by user embedding learning 
for sarcasm detection. In addition, they also highlighted 
content embedding learning using lexical representation 
in the convolutional layer. Zhang et  al. [9] applied a 
bi-directional gated Recurrent Neural Network (RNN) 
for sarcasm detection. They used syntactic and semantic 

information to obtain contextual features in historical tweets 
via a pooling neural network. Poria et al. [18] considered 
CNN and SVM, and applied features, such as sentiment, 
emotion, and personality on balanced and unbalanced 
datasets. Avvaru et al. [19] considered a transformer-based 
model for sarcasm detection in conversation sentences 
over Twitter and Reddit datasets. Authors highlighted that 
consideration of larger corpus increases context and perform 
better in terms of accuracy. Dubey et al. [20] converted the 
sarcastic expressions into their literal expressions. Apart 
from the rule-, and statistical machine learning translation-
based approaches, they considered deep learning-
based techniques, such as encoder decoder-, attention-, 
and pointer generator-networks. Hazarika et  al. [51] 
proposed CASCADE, a hybrid approach containing both 
content- and context-driven modeling to detect sarcasm on 
discussions post available on social media. Dubey et al. [21] 
detected sarcasm in the numerical portion of the texts using 
CNN and applied attention network-based deep learning 
models. Interestingly, they emphasized that sarcasm can also 
be involved in numbers.

Other Approaches

Besides machine learning and deep learning-based approaches, 
rule-based and linguistic-based approaches are also used for 
sarcasm detection. Riloff et al. [22] proposed to identify tweets 
with ”positive sentiment words contradicting with negative 
situation phrases” and considered them as sarcasm. Khattri 
et al. [23] considered user historical tweets and proposed a 
”contrast-based predictor” which reported the sentiment 
contradictions within the target tweets. Further, Bharti et al. 
[24] proposed two algorithms namely, ”parsing-based lexical 
generation algorithm” and ”interjection word start”. They 
considered lexical and hyperbolic (e.g., intensifier) features 
as an indicator of sarcasm. Liebrecht et al. [25] applied a 
linguistic approach based on balanced Winnow [26] technique 
for sarcasm detection. Likewise, Mishra et al. [27] considered 
lexical- and contextual-based features. They considered 
the gaze behavior of the readers to understand sarcasm and 
highlighted cognition cognizant techniques involving eye-
tracking as a promising approach for sarcasm detection. 
Justo et al. [36] proposed SOFOCO ”Spanish Online Forums 
Corpus”, wherein authors extracted dialogic debates from 
online sources, and further annotated by crowdsourcing 
platform to perform automatic analysis of sarcasm and 
nastiness. Mehta et al. [47] discussed that personality trait can 
be used as an input for sarcasm detection task.

Current Status and Limitations

All of the aforementioned approaches confirm the richness 
and potential of the data available on OSNs, especially 
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in the form of tweets for effective sarcasm detection. All 
approaches discussed above have considered only sarcasm 
detection, and research on detecting different categories of 
sarcasm has still not received much attention. Considering 
the fact that sarcasm occurs in different forms, and SDS is an 
important sarcasm category, development of SDS detection 
techniques deserves greater attention, because it is useful 
for numerous brand endorsement and product campaign 
purposes to boost and excel the sales volume [2]. Hence, 
the proposed SDS detection is a significant, non-trivial, and 
worth investigation task.

Proposed Approach

In this section, we present the functional details of our 
proposed CAT-BiGRU model for detecting SDS. Figure 3 
presents a visualization of the workflow of our proposed 
approach. Starting with a detailed description of the data 
crawling, ethical aspects, data pre-processing, and self-
referential tweets identification modules, the functionality 
of CAT-BiGRU model is presented in the following subsections.

Data Crawling

In this study, we have considered a total of seven datasets, 
including six benchmark datasets. Since authors of 
the benchmark datasets are allowed to provide only 
tweet ids due to the Twitter policy, we have developed 
a data crawler using Python 2.7  to curate tweets using 
the Twitter REST API and store them in a local repository. 
Since some of the tweets have been deleted or not available 
due to the protection criteria set by the Twitter users, 
our crawler was unable to curate such protected or 
deleted tweets at the time of crawling. In addition to 
six benchmark datasets, we have created a new dataset, 
namely Twitter-280 containing both sarcasm and non-
sarcasm tweets through crawler from 1st June 2019 to 31st 
July 2019 using the hashtag-based annotation technique. 
The sarcasm tweets are collected using #sarcasm hashtag, 
whereas non-sarcasm tweets are collected using the #not, 
#education, #politics, #love, and #hate hashtags. Statistical 
details of all datasets are presented in Subsection 4.1. The 
newly created Twitter-280 dataset is publicly accessible, 
but as per the Twitter rules and guidelines and in light 

of the ethical aspects, we are restricted to provide only 
tweet ids for both sarcasm and non-sarcasm categories. 
The dataset and source code of the proposed approach are 
publicly accessible on the GitHub4.

Ethical Aspects

In OSNs, consideration of ethical aspects and following 
proper guidelines for data redistribution of online platforms 
have become a crucial task. In this work, we tried our best to 
make sure about the privacy and protection of accumulated 
tweets. The proposed work was carried out for academic 
research purposes to investigate the effectiveness and detec-
tion of SDS on tweets using both 140 and 280 character 
limit criteria set by Twitter, and we have crawled tweets as 
per Twitter’s rules and guidelines, accordingly.

Elovici et  al. [37] presented several ethical aspects, 
which are taken into consideration during and after the 
data crawling tasks. The experiment was performed after 
receiving clearance from the research ethics committee 
of the department, including my doctoral supervisor. We 
ensured that crawled tweets are not shared or will not be 
shared in the future with any organization or third party/
person. During the experiment of this paper, we tried 
our level best to not violate Twitter’s terms of service5 
and privacy policy6. Further, as per  Twitter’s content 
redistribution policy7, academic researchers are allowed 
to share an unlimited number of tweet ids only for peer-
review or validation of research works. Considering this 
information, we will only distribute tweet ids of our dataset 
using the GitHub repository link given in Subsection 3.1.

Data Pre‑processing

Since raw tweets contain various noise and unwanted 
information like numbers, punctuations, acronyms, etc., 
elimination of such undesirable information is important 

Fig. 3   Workflow of the pro-
posed CAT-BiGRU model

4  https​://githu​b.com/Ashra​f-Kamal​/Self-Depre​catin​g-Sarca​sm-Detec​tion
5  https​://twitt​er.com/en/tos (last accessed on Dec. 03, 20)
6  https​://twitt​er.com/en/priva​cy (last accessed on Dec. 03, 20)
7  https​://devel​oper.twitt​er.com/en/devel​oper-terms​/agree​ment-and-
polic​y (last accessed on Dec. 03, 20)
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for better accuracy and efficiency of the system. To this 
end, we have applied data cleaning steps, such as removal 
of symbols, punctuation marks, URL’s, retweets, mentions, 
ampersands, dots, white spaces, double quotes, emoticons, 
and numbers. Thereafter, we converted all tweets into lower-
case letters and removed stop-words to reduce their length 
and retain only the significant information. While filtering 
stop-words, we have retained all self-referential-specific 
stop-words like i, my, me, mine, myself, we, us, our, and 
are in the tweets.

After data cleaning, we applied tokenization and Parts-
of-Speech (POS) tagging over each tweet using the spaCy8 
tagger, wherein POS tagging is based on the penn tree 
bank English POS tagset9. Finally, all tweets containing 
less than three tokens/words were removed from the dataset, 
because for defining context of a word, say w, we need at 
least one word left and one word right to w.

Self‑Referential Tweets Identification

On analyzing both sarcasm and non-sarcasm related tweets 
of the aforementioned datasets, we found that all tweets are 
not self-referential. Moreover, we found that if a tweet is 
not self-referential then it can never be a SDS. Therefore, 
in line to the work of Zhao et al. [28], we applied a filtering 
mechanism to consider only self-referential tweets of the 
datasets for further processing. In brief, the main steps of 
this module can be summarized as follows: 

(i)	 Identification of explicit self-referential tweets: This 
step aims to identify self-referential tweets based on 
the presence of some explicit patterns in the tweets. 
Table 1 presents a list of regular expressions-based 
patterns that are applied to identify self-referential 
tweets. These patterns are categorized as—specific 
patterns and generic patterns.

–	 Specific patterns: Specific patterns are mainly 
based on either tokens or the sequential order of 
the tags and tokens, and vice versa. In some of the 
patterns, tokens like love and still are fixed, because 
that frequently occur in self-referential tweets 
[38]. Moreover, these tokens are frequently occur 
in sarcastic tweets as well [3, 22, 24]. Similarly, 
tokens based on interjections, such as  oh,  wow, 
or yeah, are also found as strong indicators. Effron 
[39] mentioned interjection as an overtly self-
referential, and it is explicitly present in most of the 

self-referential instances. Interjection is an important 
linguistic marker in sarcastic tweets as well [3, 6, 
24, 41]. If a pre-processed tweet matches with any 
one of the specific patterns that are given in Table 1, 
then it is added into the list of explicit self-referential 
tweets, Exps.

–	 Generic patterns: Generic patterns are mainly first 
person singular/plural personal pronoun based tokens 
like ’i’ and ’we’. Besides these, tokens based on their 
other grammatical variants, such as my’, ’me’, ’mine’, 
’myself’, ’are’, ’our’, ’us’, and ’ourselves’ are also 
referred as generic patterns. The personal pronouns 
based tokens are strong indicator to categorize a tweet 
as a self-referential tweet [40]. If a pre-processed 
tweet matches with any one of the generic patterns 
that are given in Table 1, then it is added into the list 
of explicit self-referential tweets, Exps.

(ii)	 Identification of clusters from explicit self-referential 
tweets: This step clusters all tweets of Exps in the 
form of connected components. Initially, Exps tweets 
are modeled as an undirected graph, wherein each 
explicit tweet represents a node, and similarity values 
between each pair of nodes are used to create edges. 
The similarity between two nodes (explicit self-
referential tweets), say ti and tj , is calculated using the 
Jaccard coefficient, which is defined in Equation 1. In 
this equation,Ti and Tj represent the set of tri-grams 
of the tweets ti and tj , respectively. In case of tweets, 
unigrams, bigrams, and trigrams are the most adopted 
n-grams [42, 43]. We have taken tri-grams with sliding 
window of size 1 instead of larger n-grams (4-grams 
or 5-grams) in our experiment. An edge between a 
pair of self-referential tweets (nodes) is created only 
if the Jaccard similarity between their tri-grams is 
greater than a threshold of 0.6, as given in [28]. Finally, 

Table 1   Patterns to identify explicit self-referential tweets

Patterns Category

UH (i | my | we | are) Specific
(we | i ) love (it | when) Specific
when (my | our) Specific
(am | are) still Specific
(myself | ourself) (JJ | RB) Specific
(oh | wow | yeah) (i | we) (real*y | great*) Specific
(i | we) MD RB Specific
(i | am | my | me | mine | myself) Generic
(we | are | us | our | ourselves ) Generic

8  https​://spacy​.io/ (last accessed on Dec. 03, 20)
9  https​://www.ling.upenn​.edu/cours​es/Fall_2003/ling0​01/penn_ 
treeb​ank_pos.html (last accessed on Dec. 03, 20)
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all explicit self-referential tweets of a connected 
component form a cluster. 

(iii)	 Pattern-mining from clusters: After identifying the 
clusters of the explicit self-referential tweets, frequent 
patterns (tri-grams) from the clusters are mined in 
this step. To this end, the occurrence probability of 
all patterns for each cluster is calculated, and the 
patterns having the probability value greater than 0.5 
are considered as frequent patterns. For example, if a 
cluster consists of 20 tweets and a tri-gram pattern “love 
being ignored” is available in 10 out of 20 tweets, then 
such pattern is considered as a frequent tri-gram pattern. 
All identified frequent patterns are used to create a list 
of frequent patterns, FP , and a list of unique frequent 
patterns, P, is created by removing the duplicate patterns.

(iv)	 Identification of implicit self-referential tweets: This 
steps considers all those tweets that do not have any 
match in step (i) mentioned above, and termed as 
implicit tweets. The main purpose of this step is to 
recover from the low recall value. The identified 
patterns in the previous step are used to identify 
implicit self-referential. To this end, each implicit tweet 
is tokenized into tri-grams and matched with the set 
of frequent patterns, P. If an implicit tweet contains 
any frequent pattern of P, then it is considered as an 
implicit self-referential tweet, and added to the list of 
implicit self-referential tweets, Imps . Table 2 presents 
a partial list of three implicit self-referential tweets. 

(v)	 Merging with explicit self-referential tweets: In this 
step, both sets of explicit self-referential tweets and 
implicit self-referential tweets are merged together to 
generate a list, St , of candidate self-referential tweets, 
i.e., St = Exps ∪ Imps . In the remaining part of this 
paper, the list ( St ) is used as an input for SDS detection.

CAT‑BiGRU Model

This section presents a new CAT-BiGRU model used in our 
proposed approach for detecting SDS. The sequence of words 
in a candidate self-referential tweet represents important 
characteristics to determine whether the tweet represents a 
SDS or not. As stated in Section 1.3, contextual representation 
contributes significantly to self-deprecating sarcastic texts. In 
recent years, various neural network models, like RNN, have 
shown better performance in many NLP applications and 
obtained remarkable outcomes with less number of features. The 
architecture of RNN is sequential, and it can process arbitrary 
length sequences, mainly to perform sequence modeling 
tasks. GRU belongs to the RNN family, and it overcomes the 

(1)J(ti, tj) =
|Ti ∩ Tj|
|Ti ∪ Tj|

complicated word modeling task associated with unstructured 
texts. Although GRU extracts contextual information from 
the texts, it does not retrieve important information from the 
identified contextual data.

CAT-BiGRU model aims to improve the aforementioned 
drawbacks by integrating a convolutional, BiGRU, and two 
attention layers together. Figure 4 presents the architecture of 
our proposed CAT-BiGRU model. Motivated by Liu and Guo 
[29] architecture, the convolutional layer is used to extract 
SDS-based syntactic and semantic features from the candidate 
self-referential tweets, enabling BiGRU to extract contextual 
information as sequences from the features extracted by the 
convolutional layer in both forward and backward hidden 
layers. Two attention layers are applied to extract SDS-based 
context representation using the weights of the important 
words. These representations are retrieved from the preceding 
and succeeding contextual information sequences of BiGRU. 
Further, the contextual information retrieved from the 
attention layers is concatenated for a comprehensive context 
representation. Finally, it is forwarded to the sigmoid activation 
function to classify a candidate self-referential tweet as either 
SDS or NSDS. In brief, the overall functioning of the CAT-
BiGRU model can be summarized as follows:

Input layer: Each candidate self-referential tweet is tokenized, 
converted into sequences, and replaced with its dictionary 
index value, i.e., S�R1×N , where N represents words (tokens) 
count in the entire training dataset containing candidate self-
referential tweets. To make each candidate self-referential 
tweet of the same length, a fixed value of padding is used, 
i.e., S�R1×K , where K is the maximum length of a candidate 
self-referential tweet, and it is same for all candidate self-
referential tweets in the dataset. In this study, the value of K 
is set as 20. Thereafter, it is transformed into a matrix form, 
where each row represents a self-referential tweet vector, and 
passed to the word embedding layer.
Embedding layer: Embedding layer works as a 
hidden layer in neural network architectures. It shows 
distributed representations of the words as low-
dimensional real-valued dense vectors learned from 
a large corpus in a continuous embedding space. In 
word embedding, words that are semantically related 
to each other have similar vector representation. 
Furthermore, semantic and syntax relations of words 

Table 2   Few sampler self-referential tweets identified using frequent 
patterns

S. No. Implicit self-referential tweet

1 failed physics exams great.
2 absolutely love being left hang.
3 wow nothing like bit happiness.
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depend on the context factor, and it is useful for 
many NLP applications involving text classification, 
machine translation, and speech recognition. In this 
paper, Global Vectors (GloVe), a pre-trained word 
embedding of 200-dimensions based on  Twitter-
specific data that consists of 27 billion tokens is used. 
It is one of the popular pre-trained word embedding, 
which directly takes the global statistics of the large 
corpus. It considers co-occurrence matrix dataset for 
training, where word pairs based on target and context 
are taken to encode the semantic information. In this 
paper, the self-referential input vector generated from 
the input layer is feed to the pre-trained GloVe word 
embedding layer, which converts each token into a 
distributional vector of dimension D. As a result, the 
input self-referential matrix is converted into S�RK×D.
Convolutional layer: The convolutional layer is 
employed for dimension reduction task, and it 
also captures the sequence information from the 
input embedding vector. In  CAT-BiGRU, a one-
dimensional convolutional operation takes place in 
the convolutional layer. We have considered a total of 
256 filters and a window size of 3, which moves on the 
embedding vector for extracting features. As a result, 
various sequences are generated that grasp the SDS-
based syntactic and semantic features. Equation  2 
presents an nth feature sequence fn , which is generated 
from a window of words xt , where Wt and B represent 
the filter weight and bias term, respectively; and 

r(⋅ ) represents the nonlinear activation function 
as rectified linear unit (aka ReLU). All 256 filters 
perform the convolutional operation from top to 
bottom on an input candidate self-referential tweet. 
Finally, the feature sequence is obtained as Lf  = [ f1 , 
f2 , ..., f256 ]. 

BiGRU layer: BiGRU seems the right fit for sequential 
modeling tasks, and it represents word-vector 
representation. It works in both forward and backward 
directions and obtains contextual information-
based sequences from the features generated by the 
convolutional layer. It contains a forward GRU ( ��������⃗GRU ) 
which represents the succeeding feature sequences 
(i.e., f1 to f256 ) and a backward GRU ( ⃖ ��������GRU  ) which 
represents the preceding feature sequences (i.e., f256 to 
f1 ). Formally, Equations 3 and 4 present BiGRU outputs 
in forward and backward directions, respectively. It 
obtains annotations for SDS-based words (tokens) by 
summarizing both forward and backward directions. 
These annotated words (tokens) contain contextual 
information in a candidate self-referential tweet. 
Annotation for a given feature sequence Lf  of a 
candidate self-referential tweet St is obtained by the 
��⃗gf  and �⃖��gb  for the forward and backward hidden states, 
respectively. Both states compile the information 
which is collected around Lfn to retrieve contextual 
information-based sequences related to the SDS. 

(2)fn = r(Wt ⋅ xt + B)

Fig. 4   Architecture of the proposed CAT-BiGRU model
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Attention layer: In neural networks, an attention mechanism 
highlights the important keywords and minimizes the effect 
of non-keywords by specifying distinct weights to each 
word of a text. In this paper, two attention layers are used 
to allow different weights for the words in a candidate self-
referential tweet to strengthen the understanding of the SDS-
based words/tokens. Attention mechanism focuses on self-
deprecating sarcastic keyword-based features and minimizes 
the effect of non-keywords in a candidate self-referential 
tweet. The word annotation ��⃗gf  is first provided to retrieve a 
hidden representation ��⃗𝛼f  by using one layer perceptron. It is 
formally presented in Equation 5, where w and b represent 
weight and bias, respectively, and tanh is the hyperbolic 
tangent function. 

 The CAT-BiGRU model highlights the importance of 
each word, and it is done by calculating the similarity 
between ��⃗𝛼f  and ��⃗𝛽f  , where ��⃗𝛽f  represents word-level 
context vector, which is initialized randomly and fully 
learned at the time of training the CAT-BiGRU model. 
It is considered as a high-level representation of the self-
deprecating sarcastic words from the input candidate 
self-referential tweets. Further, it obtains a normalized 
weight  ��⃗zf  for each word using the softmax activation 
function, as given in Equation 6, where ∗ and exp(.) 
represent multiplication and exponential function, 
respectively. 

 Thereafter, Equation 7 presents the forward context 
representation Fc , and it is computed using ��⃗gf  and ��⃗zf  . 
Similarly, Equation 8 presents the backward context rep-
resentation Bc , and it is computed using weighted sum of 
the word annotation �⃖��gb  and the normalized weight �⃖�zb in 
the backward direction. Hence, annotation of a particular 
feature sequence Lf  is determined by concatenating the 
forward and backward context representations Fc and Bc , 
respectively. A comprehensive context representation Sc 
= [ Fc , Bc ] is obtained by concatenating Fc and Bc which 
represents a set of comprehensive features. Finally, it is 
feed to the sigmoid activation function, which is a two-
class logistic regression function, to classify a candidate 
self-referential tweet as either SDS or NSDS. 

(3)��⃗gf = ��������⃗GRU(Lfn ), n ∈ [1, 256]

(4)�⃖��gb = �⃖�������GRU(Lfn ), n ∈ [256, 1]

(5)��⃗𝛼f = tanh(w ��⃗gf + b)

(6)��⃗zf =
exp( ��⃗𝛼f ∗ ��⃗𝛽f )

∑N

i=1
(exp( ��⃗𝛼f ∗ ��⃗𝛽f ))

 In our proposed CAT-BiGRU model, drop out is used 
to reduce over-fitting and improve generalization error 
by dropping a random sample of neurons during the 
training process. A binary cross-entropy loss function is 
used for classifier training which interprets self-referential 
tweets label as SDS or NSDS. Further, all datasets are 
divided into a training set and a testing set, where 80% 
data is used for training and 20% is used for testing. The 
batch size and verbose values are taken as 256 and 2, 
respectively. We have considered Adam optimization 
algorithm and a total of 100 epochs to train the model 
which classifies candidate self-referential tweets as either 
SDS or NSDS.

Experimental Setup and Results

This section presents the experimental details of our 
proposed approach. It includes the description of the 
datasets, experimental settings, evaluation metrics and 
results, and comparative analysis with neural network-based 
baselines and state-of-the-art methods, as discussed in the 
following subsections.

Datasets

The proposed approach is evaluated over seven datasets, 
including six benchmark datasets including Twitter data. 
All these datasets are based on the old 140 characters 
limit. Besides these, we have created a new Twitter dataset, 
namely Twitter-280, which is based on the new 280 characters 
limit. Table 3 presents a brief statistics of the datasets.

Out of the seven datasets given in Table 3, tweets of 
three datasets, viz. Ptácek et al. [30], SemEval 2015 [4], 
and Riloff et al. [22] are manually annotated as either SDS 
or NSDS. These datasets are directly passed to the CAT-
BiGRU model for SDS detection. Class distributions of 
these three manually annotated datasets are given in Table 4.

Another three benchmark datasets, viz. Ling and 
Klinger [31], Bamman and Smith [32], and Ghosh and 
Veale [33], and the newly created Twitter-280 dataset of 
Table 3 are used for the identification of self-referential 
tweets, as discussed in Subsection 3.4. Table 5 presents 
the statistics of the datasets after filtering out non-
self-referential tweets using the self-referential tweets 
identification module.

(7)Fc =
∑

(��⃗zf ∗ ��⃗gf )

(8)Bc =
∑

( �⃖�zb ∗ �⃖��gb)
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Experimental Settings

In this paper, data crawling, data pre-processing, and self-
referential tweets identification modules are implemented 
in Python 2.7. The CAT-BiGRU model for SDS detection 
task is implemented in  Python 3.5  and executed using 
a neutral network API,  Keras10, which is a high-level 
neural network library in Python, and it is mainly used 
for experimental evaluation of the deep learning models. 
Table 6 presents the values of different hyperparameters 
used to implement the CAT-BiGRU model.

Evaluation Metrics

The proposed approach is evaluated using four standard 
evaluation metrics—precision, recall, f-score, and accuracy. 
These metrics are defined formally in Equations 9, 10, 11, and 
12 in terms of True positive (TP), False Positive (FP), True 
Negative (TN), and False Negative (FN). TP is defined as the 
number of correctly identified SDS tweets. FP is defined as the 
number of incorrectly identified SDS tweets. TN is defined as 
the number of correctly identified NSDS tweets. Finally, FN is 
defined as the number of incorrectly identified NSDS tweets.

(9)Precision (P) =
TP

TP + FP

(10)Recall (R) =
TP

TP + FN

Evaluation Results and Comparative Analysis

This section presents the evaluation results of our proposed 
approach and comparison with neural network-based baselines 
and state-of-the-art methods over all datasets in terms of 
precision, recall, f-score, and accuracy. Table 7 presents the 
evaluation results, where the bold entries highlight the best 
results across manually annotated and hashtag labeled datasets. 
This section also presents a comparative analysis over all 
datasets in terms of training and validation accuracy values, as 
given in Fig. 5.

Comparison with Neural Network‑Based Baselines

Starting with a brief description of the neural network-
based baseline methods and their different combinations, 
this section presents a comparison of our proposed approach 
with the baseline methods.

–	 CNN: Kim [34] introduced CNN. It is used as a baseline 
for comparison with our proposed model. In our 
experiment, the filter width and number of filters are set 
as 3 and 100, respectively.

–	 LSTM: Long-Short Term Memory (LSTM) [35] is a kind 
of RNN which does not suffer with the vanishing gradient 

(11)F-score =
2 × P × R

P + R

(12)Accuracy =
TP + TN

TP + TN + FP + FN

Table 3   Statistics of the datasets

Datasets #Sarcasm #Non-sarcasm Total (#tweets)

Ptácek et al. [30] 53088 98195 151283
SemEval 2015 [4] 1526 2366 3892
Riloff et al. [22] 370 1431 1801
Bamman and Smith [32] 7702 7358 15060
Ling and Klinger [31] 26776 25800 52576
Ghosh and Veale [33] 19452 22251 41703
Twitter-280 17488 25134 42622

Table 4   Class distributions of the manually annotated datasets

Datasets #SDS #NSDS Total (#tweets)

Ptácek et al. [30] 10793 11207 22000
SemEval 2015 [4] 1189 1310 2499
Riloff et al. [22] 483 417 900

Table 5   Statistics of the datasets after filtering out non-self-referential 
tweets

Datasets #Sarcasm #Non-sarcasm Total (#tweets)

Bamman and Smith [32] 3366 3548 6914
Ling and Klinger [31] 22591 18864 41455
Ghosh and Veale [33] 12767 13991 26758
Twitter-280 14492 19389 33881

Table 6   Hyperparameters and their values used to implement the CAT-
BiGRU model

Hyperparameter Value

Embedding dimension 200
Padding sequences 20
Number of filters 256
Filter width 3
Dropout 0.4
Number of neurons (GRU) 25610  https​://keras​.io/(last accessed on Dec. 03, 20)
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problem. It consists of three digital gates (input, output, and 
forget) and a cell memory state. In our experiment, a total of 
256 neurons are considered.

–	 BiLSTM: Likewise BiGRU, Bi-directional Long-Short 
Term Memory (BiLSTM) consists of a forward LSTM 
and a backward LSTM. In our experiment, a total of 256 
neurons are considered.

–	 CNN-LSTM: It is a combination of the CNN and 
LSTM model. In our experiment for CNN-LSTM 
combination, filter width, number of filters, and number 
of neurons are set as 3, 256, and 256, respectively.

–	 CNN-BiLSTM: It is a combination of the CNN and BiLSTM 
model. In our experiment for CNN-BiLSTM combination, 
filter width, number of filters, and number of neurons are set 
as 3, 256, and 256, respectively.

The results presented in Table 7 show that our proposed 
approach using the CAT-BiGRU model outperforms the 
neural network-based baseline methods over all datasets. 
Overall, SemEval 2015 [4] and Riloff et al. [22] achieved 
better results in terms of all evaluation metrics over all 
datasets. SemEval 2015 et  al. [22] achieved highest 
precision and accuracy values, whereas Riloff et  al. 
[22] achieved highest recall and f-score values. On 
the other hand, hashtags labeled datasets also perform 
better in terms of all evaluation metrics for the proposed 
approach. Bamman and Smith [32] performs better in 
terms of precision and accuracy values, Ling and Klinger 
[31] achieved highest recall value, and highest f-score 
value is same for Bamman and Smith [32] and Ling and 
Klinger [31] over hashtag labeled datasets. The newly 

Table 7   Performance evaluation 
results over Ptácek et al. [30] 
(DS-1), SemEval 2015 [4] 
(DS-2), Riloff et al. [22] (DS-
3), Bamman and Smith [32] 
(DS-4), Ghosh and Veale [33] 
(DS-5), Ling and Klinger [31] 
(DS-6), and Twitter -280 (DS-7) 
datasets in terms of precision, 
recall, f-score, and accuracy. 
The bold entries in the table 
highlight the best results across 
the manually-annotated and 
hashtag labeled datasets

Evaluation metrics ↓ Datasets → Manually annotated Hashtag labeled

DS-1 DS-2 DS-3 DS-4 DS-5 DS-6 DS-7

Precision Proposed approach 0.90 0.92 0.91 0.86 0.84 0.84 0.77
Abulaish and Kamal [15] 0.67 0.72 0.66 0.54 0.52 0.76 0.57
Ghosh and Veale [33] 0.73 0.62 0.53 0.51 0.61 0.73 0.61
CNN 0.80 0.80 0.77 0.73 0.76 0.81 0.75
LSTM 0.75 0.70 0.58 0.60 0.62 0.72 0.57
BiLSTM 0.75 0.69 0.56 0.60 0.61 0.72 0.57
CNN-LSTM 0.73 0.67 0.53 0.60 0.57 0.70 0.33
CNN-BiLSTM 0.72 0.66 0.54 0.52 0.56 0.69 0.7

Recall Proposed approach 0.89 0.93 0.98 0.85 0.83 0.87 0.75
Abulaish and Kamal [15] 0.36 0.42 0.48 0.37 0.34 0.48 0.16
Ghosh and Veale [33] 0.72 0.33 0.97 0.24 0.60 0.74 0.65
CNN 0.81 0.79 0.87 0.69 0.71 0.85 0.62
LSTM 0.77 0.68 0.95 0.54 0.52 0.76 0.33
BiLSTM 0.76 0.71 0.97 0.51 0.54 0.75 0.29
CNN-LSTM 0.72 0.45 0.96 0.35 0.33 0.73 0.37
CNN-BiLSTM 0.72 0.35 0.95 0.22 0.28 0.73 0.72

F-score Proposed approach 0.89 0.92 0.94 0.85 0.84 0.85 0.76
Abulaish and Kamal [15] 0.46 0.53 0.55 0.43 0.41 0.58 0.25
Ghosh and Veale [33] 0.72 0.43 0.68 0.32 0.60 0.74 0.63
CNN 0.80 0.79 0.81 0.70 0.73 0.83 0.68
LSTM 0.75 0.68 0.72 0.57 0.56 0.74 0.41
BiLSTM 0.75 0.69 0.71 0.55 0.57 0.73 0.38
CNN-LSTM 0.72 0.53 0.68 0.40 0.41 0.71 0.35
CNN-BiLSTM 0.72 0.45 0.69 0.30 0.37 0.70 0.71

Accuracy Proposed approach 0.90 0.93 0.92 0.86 0.84 0.84 0.80
Abulaish and Kamal [15] 0.57 0.61 0.60 0.53 0.54 0.63 0.57
Ghosh and Veale [33] 0.73 0.58 0.53 0.51 0.53 0.71 0.57
CNN 0.80 0.82 0.80 0.72 0.75 0.81 0.75
LSTM 0.75 0.71 0.62 0.61 0.61 0.71 0.61
BiLSTM 0.76 0.71 0.57 0.61 0.61 0.70 0.61
CNN-LSTM 0.73 0.62 0.54 0.56 0.56 0.67 0.57
CNN-BiLSTM 0.72 0.60 0.53 0.52 0.55 0.67 0.57
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created Twitter-280 dataset also receives better results 
for the proposed approach in terms of the aforementioned 
evaluation metrics.

It can be observed that among baseline methods, CNN 
achieved the highest precision, f-score, and accuracy values, 
except in Riloff et al. [22], wherein BiLSTM achieved highest 
recall value. Similarly, for hashtag labeled datasets, CNN 
reports the highest precision, recall, f-score, and accuracy 
values. However, the proposed approach performs 15.00% 
better in terms of precision, 16.04% better in terms of f-score, 
and 13.41% better in terms of accuracy values in comparison to 
CNN, and 1.03% better in terms of recall value in comparison 
to BiLSTM for manually annotated datasets. Similarly, the 
proposed approach performs 17.80% better in terms of precision, 
2.35% better in terms of recall, 2.40% better in terms of f-score, 
and 19.44% better in terms of accuracy values in comparison to 
CNN for hashtag labeled datasets.

Figure 5 presents a visualization-based comparative 
analysis in terms of training and validation accuracy 
values for all datasets. It can be observed from this 
figure that the proposed approach outperforms neural 
network-based baseline methods. Overall ,  CNN 
reports significantly better results among all neural 
network-based baseline methods in terms of training 
and validation accuracy values. Some interesting 
observations can be inferred from the aforementioned 
results that the manually annotated datasets perform 
better in comparison to the hashtags labeled datasets for 
our proposed approach and all baseline methods, because 
such datasets are more fine-grained in comparison to the 
hashtags labeled datasets in which tweets have naturally 
annotated labels by the registered users on Twitter. CNN 
performs significantly better in comparison to other 
baseline methods because it extracts local contextual 
features from the input dataset, helping to generate global 
feature vectors that can be useful for the classification 
task. In addition, the newly created Twitter-280 dataset 
contains tweets of up to 280 characters. The increase in 
tweet-length also increases overall explicit context and 
incongruity, and it affects the performance of the applied 
methods in comparison to other datasets that contain 
tweets of maximum 140 characters.

Comparison with State‑of‑the‑Art Methods

This section presents a comparative analysis of our proposed 
approach with the following state-of-the-art methods.

–	 Abulaish and Kamal [15]: In this paper, a rule-based and 
machine learning techniques are applied for detecting 
SDS over Ptácek et al. [30] dataset. They reported it as 
the first work towards automatic detection of SDS.

–	 Ghosh and Veale [33]: In this paper, authors proposed 
a neural network model for document-level sarcasm 
detection. They considered a stacking approach which 
consists of CNN, LSTM, and DNN layers. Their work has 
outperformed various neural and non-neural baselines.

Table 7 presents the comparison results of our proposed 
method with the aforementioned state-of-the-art methods. 
It can be observed from this table that our proposed 
approach using the CAT-BiGRU​ model outperforms both 
state-of-the-art methods. Similar to the neural network-
based baseline methods, previous works also perform 
better on manually annotated datasets in comparison 
to the hashtag-labeled datasets. Our proposed approach 
performs 27.77% better in terms of precision, 1.03% better 
in terms of recall, 38.23% better in terms of f-score, and 
52.45% better in terms of accuracy values in comparison 
to the state-of-the-art methods over manually annotated 
datasets. Likewise, our proposed approach performs 
59.25% better in terms of precision, 17.56% better in terms 
of recall, 14.86% better in terms of f-score, and 62.26% 
better in terms of accuracy values in comparison to the 
state-of-the-art methods over hashtag-labeled datasets. 
Figure  5 presents a visualization-based comparative 
analysis in terms of training and validation accuracy 
values over all datasets. It can be observed from this 
figure that the proposed approach outperforms state-of-
the-art methods, and again manually annotated datasets 
show better performance in comparison to the hashtag-
labeled datasets. Based on the aforementioned results, it 
can be inferred that inclusion of two attention layers in 
our proposed model which function in both preceding 
and succeeding directions provides better contextual 
representations in comparison to the Ghosh and Veale 
[33] method, wherein stacking approach is adopted 
without any attention layer mechanism. Ghosh and Veale 
[33] method functions in one direction only and lacks 
contextual representations for sarcasm detection in both 
directions.

Discussion

This section presents an analysis to show the effects of 
different GloVe embedding dimensions, GRU parameters, 
and sentic computing resources on CAT-BiGRU model over 
all aforementioned datasets.

Fig. 5   Training and validation accuracy values over (a) Ptácek et al. 
[30], (b) SemEval 2015 [4], (c) Riloff et  al. [22], (d) Bamman and 
Smith [32], (e) Ghosh and Veale [33], (f) Ling and Klinger [31], and 
(g) Twitter -280 datasets

◂
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Effect of GloVe Embedding Dimensions

Choosing the right embedding dimension is a challenging task. 
Embedding dimension refers to the total number of features 
that it encodes. Lower dimensions provide fewer features and 
lower accuracy values, whereas higher dimensions provide 
large number of features and higher accuracy, but a chance of 
over-fitting. If the corpus is not large and training time is not a 
constraint, then a higher dimension is a good choice. GloVe pro-
vides different pre-trained word vector embedding dimensions, 
such as 25, 50, 100, and 200, especially for the Twitter corpus. 
Although, considering the above facts, we have trained our CAT-
BiGRU model on 200-dimension Twitter specific GloVe word 
embedding, here we analyze its performance by varying the 
number of dimensions as 25, 50, and 100. Figures 6 and 7 
present the classification results of CAT-BiGRU rmodel for 
different GloVe embedding dimensions—25, 50, 100, and 
200 in terms of f-score and accuracy values, respectively. It 
can be observed that the CAT-BiGRU model performs better 
on GloVe 200 dimensions in comparison to 25, 50, and 100 
dimensions across all datasets.

Overall, manually annotated datasets provides better results 
in comparison to the hashtag-labeled datasets. Riloff et al. [22] 
and SemEval 2015 [4] provide highest f-score and accuracy 
values, respectively, among both (manually annotated and 
hashtag-labeled) datasets. Bamman and Smith [32] and Ling and 
Klinger [31] provides highest f-score value for hashtag-labeled 
datasets. However, Bamman and Smith [32] also provide the 
highest accuracy value for hashtag-labeled datasets. Moreover, 
it can also be observed that the performance over Twitter-280 
dataset is low in comparison to other datasets in terms of f-score 
and accuracy values. Based on these results, it can be inferred 
that the higher pre-trained embedding dimension is better for the 
feature extraction process, and it is also beneficial for the CAT-
BiGRU model for detecting SDS.

Effect of Parameters

Parameter tuning plays an important role in deep learning 
models. This section presents an analysis of the effect of 
different parameters, viz. number of GRU hidden units, 
optimization algorithms, and activation functions on 
the CAT-BiGRU model.

Number of GRU Hidden Units

The number of hidden units is an important parameter 
for the performance of any neural network-based model. 
Although we have considered a total number of 256 hidden 
units in our proposed CAT-BiGRU model, here we analyze 
its performance by varying the number of GRU hidden 
units. Figures 8 and 9 present the classification results 
of CAT-BiGRU model for different GRU hidden units (200, 
256, and 300) in terms of f-score and accuracy values, 
respectively, across all datasets. It can be observed that 
Riloff et al. [22] and SemEval 2015 [4] provide significantly 
better results in comparison to other datasets in terms of 
f-score and accuracy values, respectively. On the other 
hand, Twitter-280 provides the lowest performance. These 
results show that GRU with 256-hidden units perform 
better across all datasets. These results also indicate that 
the number of hidden units has a significant impact on the 
performance of the CAT-BiGRU model.

Optimization Algorithms

Optimization algorithms can affect the performance of a 
classification model. This section presents an analysis of 
the performance of CAT-BiGRU model using two different 
optimization algorithms—Adam and RMSprop in terms of 
f-score and accuracy values over all datasets.

Fig. 6   Effect of different  GloVe  embeddings dimensions (200, 100, 
50, and 25) on the classification results of CAT-BiGRU model over 
Ptácek et al. [30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et al. [22] 
(DS-3), Bamman and Smith [32] (DS-4), Ghosh and Veale [33] (DS-
5), Ling and Klinger [31] (DS-6), and Twitter-280 (DS-7) datasets in 
terms of f-score 

Fig. 7   Effect of different  GloVe  embeddings dimensions (200, 100, 
50, and 25) on the classification results of CAT-BiGRU model over 
Ptácek et al. [30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et al. [22] 
(DS-3), Bamman and Smith [32] (DS-4), Ghosh and Veale [33] (DS-
5), Ling and Klinger [31] (DS-6), and Twitter-280 (DS-7) datasets in 
terms of accuracy 
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Both RMSprop and Adam are popular adaptive stochastic 
algorithms to train neural network models. RMSprop maintains 
per-parameter adaptive learning rates, depending on the mean 
of the recent magnitudes of the gradients in terms of weight. 
It is mainly suitable for online and non-stationary problems. 
However, it suffers with the sparse gradient problem and 
lacks the bias-correction factor in the second-order moment 
estimation. On the other hand, Adam does not suffer with the 
sparse gradient problem, and it also solves the bias-correction 
problem which helps Adam to outperform RMSprop towards 
the end of the optimization process where the gradients become 
sparser. Moreover, Adam optimizes each parameter individually 
with different and adaptive learning rates (aka alpha) parameter. 
It includes other parameters like beta1 and beta2 that measure 
the exponential decay rate for the first-moment and second-
moment estimates, respectively, to change the learning rate for 
each weight of the neural network.

Figures 10 and 11 present the effect of Adam and RMSprop 
optimization algorithms on the classification results of CAT-
BiGRU model in terms of f-score and accuracy values over 
all datasets. It can be observed that Riloff et  al. [22] and 
SemEval 2015 [4] provide highest f-score and accuracy values, 
respectively, for Adam optimization algorithm. On the other 
hand, Twitter-280 provides lowest f-score and accuracy values 
for the Adam optimization algorithm. Overall, it can be observed 
from these figures that the results obtained using the Adam 
optimizer over all datasets are comparatively better than the 
results obtained using the RMSprop optimizer.

Effect of Activation Functions

Like optimization algorithms, activation functions also play 
a key role on the performance of the classification model. 

Fig. 8   Effect of different GRU hidden units (200, 256, and 300) on 
the classification results of  CAT-BiGRU  model over Ptácek et  al. 
[30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et  al. [22] (DS-3), 
Bamman and Smith [32] (DS-4), Ghosh and Veale [33] (DS-5), Ling 
and Klinger [31] (DS-6), and Twitter -280 (DS-7) datasets in terms of 
f-score 

Fig. 9   Effect of different GRU hidden units (200, 256, and 300) on 
the classification results of  CAT-BiGRU  model over Ptácek et  al. 
[30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et  al. [22] (DS-3), 
Bamman and Smith [32] (DS-4), Ghosh and Veale [33] (DS-5), Ling 
and Klinger [31] (DS-6), and Twitter -280 (DS-7) datasets in terms of 
accuracy 

Fig. 10   Effect of different optimization algorithms (Adam and 
RMSprop) on the classification results of  CAT-BiGRU  model over 
Ptácek et al. [30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et al. [22] 
(DS-3), Bamman and Smith [32] (DS-4), Ghosh and Veale [33] (DS-
5), Ling and Klinger [31] (DS-6), and Twitter-280 (DS-7) datasets in 
terms of f-score 

Fig. 11   Effect of different optimization algorithms (Adam and 
RMSprop) on the classification results of  CAT-BiGRU  model over 
Ptácek et al. [30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et al. [22] 
(DS-3), Bamman and Smith [32] (DS-4), Ghosh and Veale [33] (DS-
5), Ling and Klinger [31] (DS-6), and Twitter-280 (DS-7) datasets in 
terms of accuracy 
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In this section, we analyze the effect of different activation 
functions (sigmoid and softmax) on the performance 
of CAT-BiGRU model. Both functions are generally used 
in logistic regression and neural networks. However, sigmoid 
is suitable for two-class logistic regression, whereas softmax 
is suitable for multi-class logistic regression.

Figures 12 and 13 visualize the effect of sigmoid and 
softmax activation functions on classification results 
of CAT-BiGRU model in terms of f-score and accuracy 
values, respectively, over all datasets. It can be observed 
that Riloff et al. [22] and SemEval 2015 [4] provide highest 
f-score and accuracy values, respectively, for sigmoid 
activation function over all datasets, whereas Twitter-280 
provides lowest f-score and accuracy values for sigmoid 
activation function. It can be observed from these figures 
that the classification results of CAT-BiGRU model obtained 
using sigmoid function are better than the results obtained 
using softmax function over all datasets.

Effect of Sentic Computing Resources

SenticNet is a popular and common sense knowledge base 
for concept-level sentiment analysis [52]. Apart from 
common sense knowledge, it also considers affective 
knowledge via biologically-inspired and psychologically-
motivated emotional categorization model, wherein emotions 
are analyzed into independent, but connected via affective 
dimensions [54, 56, 59]. In this section, we present the effects 
of twoSenticNet-based sentic computing resources based 
on vector space model (word embedding)—Amazon word 
embedding (Amazon WE) [53] and AffectiveSpace [50] on 
the proposed CAT-BiGRU model.

Amazon WE  is a sentic computing  resource 
of  SenticNet  which is based on  word2vec  model and 
provides a 300-dimensional sentiment embeddings generated 

from the Amazon product reviews, and that also includes 
affective information. On the other hand, AffectiveSpace is 
a 100-dimensional vector space representation of AffectNet, 
which is a matrix of affective commonsense knowledge 
and SenticNet  is built on it. In this section, both sentic 
computing resources are used to evaluate the classification 
results of our proposed  CAT-BiGRU  model, and also 
compared with Twitter-specific GloVe embedding over all 
datasets.

Tables  8 and 9 present the classification results 
of  CAT-BiGRU  model using  GloVe,  Amazon WE, 
and AffectiveSpace in terms of f-score and accuracy values, 
respectively, over all datasets. Interestingly, the proposed CAT-
BiGRU model using both sentic computing resources provides 
good results in terms of f-score and accuracy values over all 
datasets. However, results obtained using Amazon WE are better 
in comparison to AffectiveSpace. Based on these results, it can 
be inferred that inclusion of sentic computing resources in CAT-
BiGRU model can boost its accuracy for detecting SDS.

Fig. 12   Effect of different activation functions (sigmoid and softmax) 
on the classification results of CAT-BiGRU model over Ptácek et al. 
[30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et  al. [22] (DS-3), 
Bamman and Smith [32] (DS-4), Ghosh and Veale [33] (DS-5), Ling 
and Klinger [31] (DS-6), and Twitter-280 (DS-7) datasets in terms of 
f-score 

Fig. 13   Effect of different activation functions (sigmoid and softmax) 
on the classification results of CAT-BiGRU model over Ptácek et al. 
[30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et  al. [22] (DS-3), 
Bamman and Smith [32] (DS-4), Ghosh and Veale [33] (DS-5), Ling 
and Klinger [31] (DS-6), and Twitter-280 (DS-7) datasets in terms of 
accuracy 

Table 8   Effect of  GloVe  and sentic computing resources (Ama-
zon WE  and  AffectiveSpace) on the classification results of  CAT-
BiGRU model over Ptácek et al. [30] (DS-1), SemEval 2015 [4] (DS-
2), Riloff et al. [22] (DS-3), Bamman and Smith [32] (DS-4), Ghosh 
and Veale [33] (DS-5), Ling and Klinger [31] (DS-6), and  Twit-
ter-280 (DS-7) datasets in terms of f-score 

Datasets GloVe Amazon WE Affective Space

DS-1 0.89 0.85 0.79
DS-2 0.92 0.86 0.81
DS-3 0.94 0.84 0.69
DS-4 0.85 0.80 0.75
DS-5 0.84 0.81 0.58
DS-6 0.85 0.82 0.81
DS-7 0.76 0.75 0.73
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Conclusion and Future Work

SDS is a special category of sarcasm which is mainly used 
as an effective tool for product campaign and marketing. In 
this paper, we have proposed a novel CAT-BiGRU model 
for SDS detection. The proposed model consists of an 
input, embedding, convolutional, BiGRU, and two attention 
layers, and it is evaluated over seven datasets from different 
perspectives. Experimental results of CAT-BiGRU are 
promising and significantly better in comparison to 
various neural network-based baselines and state-of-the-art 
methods. One of the main aims of this novel SDS detection 
technique is to enhance the SDS-based marketing strategy. 
We plan to develop a full-fledged web-based tool to read 
user-supplied inputs and provide SDS score, polarity value, 
different forms of visualization, and various levels of 
emotion using biologically-inspired and psychologically-
motivated SenticNet-based sentic computing resources 
like  The Hourglass of Emotions[55] as output. The 
tool could be useful for both marketing management 
team and end-users for analysis, recommendation, and 
extraction of information about the latest trend in SDS-
based advertisements of a product or brand. In addition, 
extending the proposed approach of SDS detection in 
multilingual data that can be operational on multimodal 
platforms seems one of the interesting future directions 
of research.
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