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BiCapsHate: Attention to the Linguistic Context of
Hate via Bidirectional Capsules and Hatebase
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Abstract— Online social media (OSM) communications some-
times turn into hate-filled and offensive comments or arguments.
It not just disrupts the social fabric online, but also leads to
hate, violence, and crime, in the real physical world in worst
scenarios. The existing content moderation practices of OSM
platforms often fail to control the online hate. In this article,
we develop a deep learning model called BiCapsHate to detect
hate speech (HS) in OSM posts. The model consists of five layers
of deep neural networks. It starts with an input layer to process
the input text and follows on to an embedding layer to embed
the text into a numeric representation. A BiCaps layer then
learns the sequential and linguistic contextual representations,
a dense layer prepares the model for final classification, and
lastly the output layer produces the resulting class as either hate
or non-HS (NHS). The BiCaps layer, being the most important
component, effectively learns the contextual information with
respect to different orientations in both forward and backward
directions of the input text via capsule networks. It is further
aided by our rich set of hand-crafted shallow and deep
auxiliary features including the Hatebase lexicon, making the
model well-informed. We conduct extensive experiments on five
benchmark datasets to demonstrate the efficacy of the proposed
BiCapsHate model. In the overall results, we outperform the
existing state-of-the-art methods including fBERT, HateBERT,
and ToxicBERT. BiCapsHate achieves up to 94% and 92%
f-score on balanced and imbalanced datasets, respectively. Our
complete source code is publicly available at GitHub repository
https://github.com/Ashraf-Kamal/BiCapsHate.

Index Terms— Capsule networks, hate speech (HS) detection,
Hatebase lexicon, long short-term memory (LSTM) networks,
online social media (OSM).

I. INTRODUCTION

ONLINE social media (OSM) platforms, such as Face-
book and Twitter, allow users to create, foster, and

shape relationships, by exchanging ongoing moods, emotions,
thoughts, information, and experiences [1], [2], [3], [4]. The
exchange of thoughts of users on critical issues sometimes
leads to heated arguments [5]. Tweets posted by high-
profile politicians and celebrities get disseminated to large
masses in a short span of time through their followers,
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and then receive responses back from the followers in
the form of retweets, comments, likes, and shares. It has
become a problem of growing concern these days that often
the responses are filled with negative, hateful, and abusive
comments, especially on crucial and controversial issues. The
hate sometimes targets a specific community, race, gender,
or socio-political group. This nature of communications further
propagates hate that may lead to adverse consequences,
such as physical violence, in our real-world societies. For
example, in February 2020, lots of hate speech (HS) contents
were posted on social media platforms related to Delhi’s
(India) Shaheen Bagh protest against the national register
of citizens (NRC), citizenship amendment act (CAA), and
national population register (NPR).1 The hate particularly
targeted one religious community and those supporting the
protest. Soon after this, a violent riot took place in Delhi.2

Similar HS instances keep appearing in different parts of
the world in small (individual level) and large (community
level) scales. The social media platforms usually have teams
for content moderation, following a standard policy to deal
with such offensive contents. Sometimes the contents are
deleted and the violating users are suspended. However, the
moderation in its current form is ineffective in controlling the
amount of online hate propagation [6], [7].

The problem of HS detection on social media platforms
is attracting attention of researchers from different fields,
including data science, artificial intelligence, natural language
processing, social science, psychology, and law. The existing
literature has explored several supervised learning methods
for solving this problem [8], [9], [10], [11]. However, there
is still a demand for more effective methods. There is a
significant role of context in HS detection [8], [12]. Our
communicative language is often ambiguous. A word can be
hateful in one context and normal in another. For example,
the word “bitch,” existing in HateBase (discussed later in
detail), is a fairly normal word when used to mean a “female
dog,” but can be hateful when used in the context of a
“human female.” It is the context that distinguishes between
the hateful and nonhateful forms. One major challenge in HS
detection is to effectively capture the context of hate. Some
HS detection methods rely on handcrafted features to a great
extent. It requires a lot of manual engineering and design,

1https://www.aljazeera.com/news/2020/2/10/indias-bjp-slammed-for-
offensive-tweet-on-anti-caa-protesters [accessed on 23-Oct-2022].

2https://thewire.in/communalism/delhi-riots-misinformation-radicalisation-
social-media [accessed on 23-Oct-2022].
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which makes it time-consuming, cost-intensive, and ad hoc.
Most of the existing deep learning methods are based on
recurrent neural networks (RNNs) [13], [14] such as long
short-term memory (LSTM) and gated recurrent unit (GRU),
and convolutional neural networks (CNNs) [11], [15]. While
RNNs are able to capture the sequential context, they perform
marginal due to the short length of the nonliteral social
posts [16]. CNNs capture the semantics of a sentence by
performing convolution operations over the tweets, but suffer
from being translation invariant [17]. The contextual language
models such as BERT [18] and its variants perform much
better than the others, as shown in [19].

We formulate the problem of HS detection as a binary
classification problem. As discussed earlier, the role of context
is important in this problem. Context is multifaceted. In this
article, we particularly mean the linguistic context of utterance.
It is defined by the surrounding language and conversations.
The social context [20], [21], on the other hand, is defined
by the culture and societal hierarchies. We do not explicitly
study this form of context, but it may be reflected implicitly
by the type of hateful language used in the datasets, given the
way these are collected. The linguistic context of utterance
exists in different orientations and different directions of the
text [22]. To this end, we develop a novel deep learning
model, called BiCapsHate, for HS detection. The model
consists of several advanced layers of deep neural networks
(DNNs), each one dedicated to capture different specific
properties of HS. It starts with an input layer that processes
the input text, and follows on to an embedding layer that
embeds the text into a numeric representation, a BiCaps layer
that learns the sequential and contextual representation in
different orientations, a dense layer that prepares the model for
final classification, and lastly the output layer producing the
resulting class. The novelty of the proposed model lies mainly
in the BiCaps layer. It learns the contextual information with
respect to different orientations in both forward and backward
directions of the input text. This is further aided by our
rich hand-crafted auxiliary features including the Hatebase
lexicon, making the model well-informed. Overall, we make
the following major contributions in this article.

1) We investigate the problem of HS detection over social
media. Deep learning approaches generally perform
better than classical machine learning approaches.

2) We develop a novel deep learning model called
BiCapsHate for HS detection. Our model is based
on five advanced layers of DNNs and well-informed by
a rich set of auxiliary features.

3) As part of our BiCapsHate model, the developed
BiCaps layer effectively learns the contextual informa-
tion in different orientations of the input text. This
is achieved with the help of stacked bidirectional
LSTM (BiLSTM) networks integrated with forward
and backward capsules, attention and auxiliary features
including the Hatebase lexicon.

4) We conduct extensive experiments to demonstrate the
efficacy of the proposed model in comparison to the
existing state-of-the-art methods on five benchmark
datasets.

TABLE I

SUMMARY OF EXISTING LITERATURE ON HS DETECTION

The rest of this article is organized as follows. We present
the existing literature in Section II and an overview in
Section III. Section IV presents the architectural details of
the proposed model and Section V demonstrates the efficacy
of the proposed method. Finally, this article is concluded in
Section VI.

II. RELATED WORK

HS lacks a universally accepted definition. Social networks
have their own definitions for content moderation. According
to Twitter, HS is a tweet “that promotes violence against or
directly attack or threaten other people on the basis of race,
ethnicity, nationality, sexual orientation, gender, religious
affiliation, age, disability, or serious disease.”3 The problem
of HS detection is better addressed by supervised learning
approaches. Table I presents a summary of the existing
literature. Some of the early works were based on classical
machine learning, whereas recent works have found deep
learning more effective.

A. Classical Machine Learning Approach

This group of works defines a set of relevant features and
train a machine learning model on them for classification.
Warner and Hirschberg [8] used unigram, part of speech,
and other template-based features. They trained a support
vector machine (SVM) model with the linear kernel to
classify hate and nonhate contents. Some works have also
used logistic regression (LR) [9], [23], [25]. Other similar
works [23], [24] use n-grams, hateful n-grams, and typed

3https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
[accessed on 23-Oct-2022].
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dependencies to extract features and train classifiers such as
Bayesian LR, random forest, SVM, and voted ensemble, over
Twitter data. Some studies [9] have found character n-gram
features more discriminatory than word n-grams in seg-
regating the hateful and nonhateful content. The para-
graph2vec neural model used in [25] is another effec-
tive way for vector representation. Some works high-
light a subtle difference between hateful and offensive
language [12], [27]. They treat the task as a multil-
abel classification of hate, offensive, and normal con-
tents. Davidson et al. [12] developed an LR model
with L2 regularization using a large set of shallow and
deep features. Malmasi and Zampieri [27] used character
n-gram, word n-gram, and word skip-gram features to train
a linear SVM classifier for the multilabel classification. This
approach also been used for script-mixed and code-mixed
contents [26]. However, classical machine learning requires
feature engineering, which is a manual and time-consuming
task involving human bias.

B. Deep Learning Approach

Deep learning has become a preferred choice of researchers
for HS detection, especially because it does not depend on
the tedious feature engineering. Badjatiya et al. [15] evaluated
random, Global Vectors (GloVe) [34], and fastText [35]
word embeddings with various neural network architectures
such as CNN and LSTM for HS detection in tweets.
In [28], a hybrid model based on LR and CNN is used to
classify abusive and nonabusive tweets. Zhang et al. [14]
developed a deep learning model with a combination of
convolution and GRU layers. Most of these models use
only word embedding representations [14], [15], [29], [30].
Cao et al. [36] incorporated multifaceted information such
as semantic, sentiment, and topical information, by using a
combination of three different word embeddings, sentiment
embedding, and topic representation. A deep learning model
based on CNN, LSTM, and attention is trained on the
representations. Roy et al. [11] developed a CNN-based
framework for binary classification of hate. Sometimes,
social media users post cross-lingual textual contents. For
example, English used together with Hindi (aka Hinglish).
Some works [10], [31] developed deep learning models
based on CNN, LSTM, BiLSTM, and more advanced
neural network architectures for HS detection in such cross-
lingual texts. Capsule networks [37] have recently been
found effective in capturing the context of textual contents
in different orientations. These networks have been found
promising also for HS detection [22], [32]. Transformer-
based language models pretrained on hate-specific contents
such as fBERT [38], HateBERT [39], and ToxicBERT [40]
have been found quite effective for this task. A recent
study created a multidomain HS corpus and developed
a simple deep learning baseline [7]. Some analogous
research directions are identification of hate-targeted vulner-
able communities [33] and generalization of HS detection
models [19].

Fig. 1. Components of the proposed HS detection method.

C. Current Status and Limitations

Existing research has found deep learning approaches fairly
effective for HS detection. Several works have highlighted
the importance of context in disambiguating textual contents
and identifying hate. The existing works, particularly those
based on capsule networks, have started investigating and
exploiting the context. However, the existing works still have
some limitations. First, the approach in which they use capsule
networks is ineffective in capturing the bidirectional context.
Second, they lack the useful neural networks for attention to
emphasize on the hate context. Third, they do not use any
HS-related lexicon to design a domain-relevant model. The
BiCapsHate model, proposed in this article, addresses all
these existing limitations.

III. PROBLEM AND SOLUTION OVERVIEW

A. Problem Statement

Let us suppose, we have a set of textual posts, published
by users on an OSM platform. The problem of HS detection
considered in this article aims to classify each post into
the classes of HS and non-HS (NHS). Thus, it is a binary
classification problem.

B. Proposed Method Overview

Fig. 1 shows the overall components of the proposed HS
detection method. We begin with the preliminary steps of
data collection and preprocessing, and then follow on to our
novel bidirectional capsule-based deep learning model called
BiCapsHate. The preprocessing step rigorously cleans and
case-normalizes the raw tweets using the NLTK toolbox.4 The
resulting fine-grained dataset is passed into the input layer of
our multilayered BiCapsHate model. It also exploits the
HateBase lexicon, as shown in the figure, and a rich set
of hand-crafted shallow and deep features. The architectural
details of the model are presented in Section IV.

IV. THE BiCapsHate MODEL

We develop our novel deep learning model, called
BiCapsHate, by addressing the existing limitations. Fig. 2
shows the detailed architecture of the proposed model.
It consists of five advanced layers of DNNs. As shown
in the figure, the social media text is first collected using
their Tweet IDs provided in the datasets and preprocessed
(shown in the top-left corner) and then passed into the input
layer of the model. The input text (tweet) is converted into
its corresponding input vector, and it is forwarded to the
embedding layer. The output 2-D matrix produced by the

4http://www.nltk.org/howto/sentiment.html [accessed on 23-Oct-2022].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: JAMIA MILLIA ISLAMIA UNIVERSITY- NEW DELHI. Downloaded on January 20,2023 at 08:28:32 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 2. Architecture of the proposed BiCapsHate model.

embedding layer is passed into the BiCaps layer. It consists
of a stack of BiLSTM networks, bidirectional capsules,
an attention network and auxiliary features. The forward and
backward directions of the stacked BiLSTM together with the
two opposite directions of the capsules generate contextual
representations from different orientations. The dynamic
routing algorithm employed inside the capsules increases the
weight values of the important HS-related latent features
present in the input text. Two 2-D matrices corresponding
to the forward and backward capsules are generated as
output. These matrices are concatenated together to produce
a comprehensive 2-D matrix. This matrix is then passed
into the attention network to emphasize maximum attention
on the HS-related words. It distills the most significant
information and generates an input vector. Moreover, several
shallow and deep auxiliary features, including the Hatebase
lexicon (detailed later in Section IV-C), are also extracted
from five different categories. We generate a feature vector
with all these additional information. The feature vector is
concatenated with the BiCaps vector, which further enriches
the representation. One part of the vector is learned from a
series of neural networks and the other part is captured from
inherent characteristics. The concatenated vector is passed into
the dense layer followed by a sigmoid activation function in
the output layer to classify the input text as either HS or NHS.
We present the details of each layer in the following sections.

A. Input Layer

Given the preprocessed input text of a tweet t of wt words,
the input layer first tokenizes its textual contents. The tokens
are indexed in a dictionary before further processing, if they
are not already indexed by the previous tweets. The tokens
are then converted into a numeric vector u, by replacing
each token with its index in the dictionary. The length of u
may vary for different tweets, depending on the tweet length.
To maintain a fixed-length p of input vectors of all the tweets,
we transform u to a fixed-length padded-vector v, such that

|v| = p ≥ |u|. The first |u| entries of v are filled by u and
the remaining (p − |u|) entries are filled with padding values
of zero. The fixed-length resulting vector v ∈ R1×p is then
forwarded to the embedding layer.

B. Embedding Layer

Text embedding provides learned word representations in
the form of low-dimensional dense vectors in a continuous
embedding space. We use GloVe in the proposed model.
It is a popular pretrained word embedding model based
on distributed word representations. It encodes the semantic
information between word pairs in a co-occurrence matrix
and applies an unsupervised algorithm to generate the vector
representations. It has been found to be highly effective. As our
model is to be applied on social data, we use a Twitter-
specific GloVe embedding that consists of 27 billion tokens.
It is able to generate embeddings of almost all the tokens in
our datasets. Each token of the input vector is converted into
its distributional vector representation of dimension d . As a
result, the input vector is converted to a matrix I ∈ R p×d ,
where each row of the matrix is a vector representation of the
corresponding token.

C. BiCaps Layer

The embedding matrix I , representing the input text,
is processed through a neural network layer called BiCaps
layer. It consists of three different types of neural networks.
It starts with a stacked LSTM, treating the forward and
backward textual representations separately, which is followed
by two capsule networks corresponding to each direction. The
resulting forward and backward vectors are concatenated and
processed through an attention network to generate a BiCaps
vector. Overall, the BiCaps layer aims to achieve the following
three objectives, in order to detect HS in the input text:
1) extract the HS-related contextual sequences using stacked
BiLSTM networks; 2) capture the different orientations
and spatial relationships using two capsule networks; and
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3) emphasize toward important contextual words using
attention.

1) Stacked BiLSTM: LSTM [41] is as a special type of
RNN. It is capable of handling long-term dependencies and
avoiding the vanishing gradient descent problem. Although
LSTM has an ability to extract HS-based contextual sequences
from textual data, it is operational in only forward direction.
A stacked LSTM architecture [42] consists of multiple LSTM
layers, where each preceding LSTM layer provides a sequence
output rather than a single-value output to the following
LSTM layer. It has been found to be effective for sequence
modeling [42].

The proposed model employs a stacked BiLSTM network.
It consists of two stacks of 128 LSTM units, one each for the
forward and backward directions. Thus, it handles long-term
dependencies and extracts HS-based contextual sequences
more effectively from the input text in both forward and
backward directions. The semantically rich low-dimensional
vectors produced by the embedding layer are passed separately
to the forward and backward stacked LSTMs. It generates
the forward and backward contextual sequences. The two
hidden states

−→
h f and

←−
hb are produced as outputs of the

forward and backward stacked LSTMs, respectively. In order
to minimize the overfitting and enhance the generalization
error, the previous outputs are processed through respective
dropouts with a rate of 0.5. The resulting representations are
passed separately to two different capsule networks.

2) Capsule Network: A CNN or ConvNet is a class of
DNN, used in many image and text processing applications.
Traditional CNNs suffer from limitations in recognizing
features of different orientations. The pooling technique used
in them leads to a loss of some important features. CNNs
are also unable to retain spatial relationships between the
learned features in deeper layers. Capsule networks [43]
overcome these limitations by recognizing the part-whole
spatial relationship across features in the textual data.

Capsule networks were introduced for computer vision
applications. A capsule is a group of neurons that perform
computations on the inputs and encapsulate the results as
an activity vector of highly informative outputs. The vector
represents the instantiation parameters of a specific type of
entity such as an object (e.g., eye or nose) or an object
part [44]. Its length is used to represent the probability that
the entity exists and its orientation represents the instantiation
parameters. After the features are detected by lower level
capsules, these are sent to higher level capsules through
the dynamic routing algorithm. In this way, capsules learn
the spatial relationships between the different entities present
in an image. Capsule networks work in a similar way for
text processing [45]. While an image is represented by
a matrix of pixels, a piece of text is represented by a
matrix of its embedding, where each row is an embedding
vector of a word. The lower level capsules encode the
spatial information from the input embedding matrix as
activity vectors containing important semantic information
of the text. The connection strengths between lower- and
upper-level capsules are determined by repetitive routing

as part of the dynamic routing algorithm with the help
of a coupling coefficient. The algorithm is responsible for
computing the weight values of latent features, encoding of
spatial information, and mining rich contextual information
in different orientations. The computed connection strengths
are used to send the information to upper levels with a
good fit. In this way, capsules learn the spatial relationships
between textual entities or words through the dynamic routing
algorithm and represent the inherent properties. Thus, it makes
sense of words even if they do not appear adjacently.
Considering the textual semantics and context, they enrich
the information by encoding the local ordering of words in
the input text [46], [47]. Thus, capsule networks are able to
extract salient features in different orientations of the input
text. They capture the textual expression ability and help in
retrieving the latent contextual information.

Considering the above-mentioned characteristics, we use
two capsule networks in the proposed model, corresponding to
the forward and backward directions. Each network consists
of five capsules of dimension eight. The capsule networks
capture the different orientations and spatial relationships of
HS-related contextual information present in the input text.
To this end, the two stacks

−→
h f and

←−
hb of hidden state vectors

generated from the stacked LSTMs, after processing through
the dropouts, are passed separately as inputs to the forward
and backward capsule networks, respectively. Equation (1)
shows the prediction vector

−→
û j |i of capsule j from capsule i

of lower layer, for the forward contextual representation. It is
calculated from a learned transformation weight matrix −→wi j

and the hidden state vector
−→
h f given as input to the forward

capsule network. Coupling coefficients determine the degree
to which lower capsules are promoted to upper capsules. The
vector of coupling coefficients −→ci j in between the input and
output layers is calculated via softmax as shown in (2), wherein
bi j is the log prior probabilities that capsule i should be
coupled to capsule j . bi j is initialized to 0. The higher weight
values of important features directly depend on larger values
of coupling coefficients −→ci j [48]. The output of higher layer
capsule −→s j is calculated by summing up of all the prediction
vectors with the coupling coefficient vectors −→ci j , as shown in
(3). The coupling coefficient vectors −→ci j are updated iteratively
via the dynamic routing algorithm. As a result, unimportant
and unrelated NHS words are ignored in the forward direction
of the input text. The total value of the coupling coefficients
between the capsules of input and output layers is 1. Equation
(4) shows a nonactivation function called squash used for
normalizing and generating the output vector−→v j in the forward
direction of the input text

−→
û j |i = −→wi j

−→
h f (1)

−→ci j = exp(bi j)∑
t exp(bit )

(2)

−→s j =
n∑

i=1

−→ci j
−→
û j |i (3)

−→v j = �−→s j �2

1+ �−→s j �2

−→s j

�−→s j � . (4)
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The same process is separately applied on the backward
hidden state vector

←−
hb using the backward capsule network.

After computing the backward prediction vector
←−
û j |i , the

backward capsule←−s j is used to generate the backward output
vector, as shown in (5). It captures the different orientations
in backward direction of the input text. Finally, (6) generates
the comprehensive output vectors fc as a 5 × 16 matrix by
concatenating the 4 × 8 matrices corresponding to the forward
and backward output vectors

←−v j = �←−s j �2

1+ �←−s j �2

←−s j

�←−s j � (5)

fc = −→v j ⊕ ←−v j . (6)

3) Attention Network: Attention is a DNN-based technique
that aims to capture the most important information according
to overall semantics of the input data [49]. It is achieved
by focusing on relevant contextual words appearing in the
input text. In the proposed model, we consider a word-
level attention mechanism. Our attention network receives the
5 × 16 matrix of comprehensive vectors fc as input and
captures the relative importance by giving focus on HS-
related tokens. Equation (7) shows the hidden representation
ut generated by a tanh(·) activation function. The input to
tanh is the product of a learned trainable weight matrix Ww

and fc added by a bias bw vector. Equation 8 computes the
normalized similarity αt between the hidden representation ut

using the softmax. Lastly, (9) calculates the BiCaps vector
si of the input text based on αt and fc

ut = tanh(Ww fc + bw) (7)

αt = exp(ut )∑
t (exp(ut ))

(8)

si =
t∑

i=1

αt fc. (9)

D. Enhancement With Lexicon and Other Auxiliary Features

HS characterizes specific properties, some of which are
obvious whereas others are obscure. One of the most
prominent properties is the usage of hate lexicon terms in the
input text. There exists a well-established benchmark lexicon
for HS called Hatebase.5 A high match of the input text
with Hatebase terms indicates a high possibility of being
an HS. We consider the Hatebase lexicon as a category
of auxiliary features. Similarly, there also exist some other
important features, such as sentiment, that can further aid
our deep learning model. Therefore, we hand-craft a total
of 26 auxiliary features grouped into five categories. These
features aim to enhance the performance of our BiCapsHate
model. A feature vector lv ∈ Rd of d = 26 dimensions is
generated using these auxiliary features.

1) Hatebase Lexicon: Hatebase lexicon features are effec-
tive in the identification of offensive terms [12]. We consider
ten independent lexical features based on this lexicon: hate
score, unambiguous score, offensiveness score, nationality

5https://hatebase.org/ [accessed on 23-Oct-2022].

score, ethnicity score, religion score, gender score, sexual
orientation score, disability score, and class score. The score
of each feature is computed as the normalized summation of
individual word scores in the input text.

2) Sentiment: Generally, there is a significant presence of
sentiment in the context of hate. HS-related texts exhibit a
high degree of negative polarity in comparison to NHS [50].
We consider four sentiment-related independent features:
polarity score, subjectivity score, count of positive words,
and count of negative words. These are computed using
TextBlob.6

3) Affective: Affective contents related to moods and
feelings are important constituents in HS-related textual data.
Affective Norms for English Words (ANEW) [51] is a collection
of 1034 words characterized in affective dimensions. Based
on ANEW, we consider three independent affective features:
valence score, arousal score, and dominance score. Each of
these scores is computed as the normalized summation of
individual word scores in the input text.

4) Syntactic: Syntactic features are important in the
identification of targets and intensity of HS [12]. We consider
4 syntactic features based on the presence of POS tags of
verb (VB), noun (NN), adverb (RB), and adjective (JJ). These
features are extracted using NLTK.7 To this end, each input
text is tokenized and the respective POS tags are assigned
using Penn Treebank.8 All the four considered features are
independent and binary in nature. A score of 1 is assigned if
the corresponding POS tag appears at least three times in the
input text, otherwise it is set to 0.

5) Readability: Readability features capture the language
quality of a text [12]. Textstat9 is a Python library that
can calculate some statistical measures related to readability
and complexity of a text. Based on Textstat, we consider five
independent readability features: Flesch reading ease score,
Gunning fog index score, automated readability index score,
Coleman Liau index score, and syllable count score. The score
of each feature is computed as the normalized summation of
individual words scores in the input text.

E. Dense and Output Layers

The BiCaps vector si generated by the BiCaps layer in
Section IV-C and the auxiliary feature vector lv generated
in Section IV-D are concatenated as cv = lv ⊕ si . The
concatenated vector cv is then passed on to a fully connected
dense layer. We use a binary cross-entropy loss function for
training the model. Thereafter, the classification is finally done
by a sigmoid function into the classes of HS and NHS.

V. EXPERIMENTAL EVALUATION

We conduct extensive experiments on five real benchmark
datasets. Our complete source code and detailed results are
publicly available at GitHub repository.10

6https://textblob.readthedocs.io/en/dev/ [accessed on 23-Oct-2022].
7https://www.nltk.org/ [accessed on 23-Oct-2022].
8https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_

pos.html [accessed on 23-Oct-2022].
9https://pypi.org/project/textstat/ [accessed on 23-Oct-2022].
10https://github.com/Ashraf-Kamal/BiCapsHate
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TABLE II

DATASET STATISTICS

A. Datasets

We consider five real benchmark datasets: 1) DS-1 [12]: It
consists of 24 802 tweets, each labeled as either hate, offensive,
or neither. Since we focus on the binary classification
of hate, we consider only the tweets labeled as hate and
neither for our HS and NHS classes. It results into a total
of 5593 tweets; 2) DS-2 [50]: It consists of 80 000 tweets,
each labeled as either abusive, hateful, normal, or spam.
Similar to the previous dataset, we consider only the tweets
labeled as hateful and normal for our HS and NHS classes.
It results into 43 015 tweets; 3) DS-3 [52]: It consists of
1528 Fox news user comments that belong to either HS
or NHS classes. We consider this dataset, as it is; 4) DS-
4: This dataset is obtained from kaggle,11 consisting of
31 962 tweets. Each of them is labeled as either HS or NHS.
After some filtering, we consider a total of 29 530 tweets; and
5) DS-5 [53]: It consists of 20 148 tweets, each labeled as
either hateful, offensive, normal, or undecided. Like others,
we consider only the tweets labeled as hateful and normal
for our HS and NHS classes. Table II shows our dataset
statistics. The second column of the table shows the numbers
of HS and NHS instances in the raw datasets. There exist
some redundant instances in these datasets, which are removed
through preprocessing. The third column shows the number of
instances after preprocessing. These datasets are imbalanced in
terms of the number of instances in each class. For a detailed
analysis, we further create another balanced version having
equal number of HS and NHS instances.

B. Experimental and Model Parameter Settings

The proposed method is implemented in Python, using
Keras12 library. Table III shows our experimental and model
parameter settings. The datasets are split into training and
validation sets in the ratio of 80:20. The batch size, verbose,
and epoch are set to 128, 2, and 50, respectively.

C. Compared Methods and Evaluation Metrics

1) State-of-the-Art Methods: We consider the following six
existing state-of-the-art methods.

1) Ding et al. [22]: This method consists of a stack of
bidirectional GRU (BiGRU) and capsule network layers

11https://www.kaggle.com/vkrahul/twitter-hate-speech?select = train_E6o
V3lV.csv [accessed on 23-Oct-2022].

12https://keras.io/ [accessed on 23-Oct-2022].

TABLE III

EXPERIMENTAL AND PARAMETER SETTINGS

in its deep learning model for HS detection on Twitter
datasets.

2) Mossie and Wang [33]: This method consists of
two RNN (GRU/LSTM) layers for HS detection and
identification of vulnerable communities on Facebook
and Twitter.

3) Roy et al. [11]: This method consists of a CNN-based
deep learning model for HS detection on Twitter dataset.

4) fBERT [38]: It is a BERT model, pretrained on a large
English offensive language corpus (SOLID), containing
more than 1.4 million offensive instances.

5) HateBERT [39]: It is another BERT model, pretrained
on a Reddit dataset of communities banned for being
offensive, abusive, or hateful.

6) ToxicBERT [40]: ToxicBERT is another BERT-based
pretrained model for toxic content detection.

2) Baseline Methods: We consider ten baseline methods,
consisting of three classical machine learning methods (naive
Bayes, decision tree and random forest), six DNN models
(DNN, CNN, LSTM, BiLSTM, GRU, and BiGRU), and one
transformer-based pretrained language model (BERT [18]—
bidirectional encoder representations from transformers). Our
DNN has two hidden layers with 128 neurons each, CNN has
128 filters with a width of 3 each, ad LSTM, BiLSTM, GRU,
and BiGRU have 128 neurons. We use BERT-base-uncased
version with 768-dimensional embedding having 12 hidden
layers and 12 attention heads.

3) Evaluation Metrics: We evaluate the performance in
terms of four standard metrics—Precision, Recall, F-score,
and Accuracy.

D. Experimental Results

This section presents our experimental results and evalu-
ation of the proposed BiCapsHate model in comparison
to the six state-of-the-art methods and ten baseline models.
Tables IV and V show the results on the balanced and
imbalanced datasets, respectively, in terms of precision, recall
and f-score. Observe from Table IV that our BiCapsHate
consistently outperforms all the compared methods over
balanced datasets. The proposed model also completely
outperforms the compared methods over imbalanced datasets
over DS-1, DS-3, and DS-5 (3 out of 5). ToxicBERT

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: JAMIA MILLIA ISLAMIA UNIVERSITY- NEW DELHI. Downloaded on January 20,2023 at 08:28:32 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

TABLE IV

PERFORMANCE RESULTS ON BALANCED DATASETS. THE PROPOSED BiCapsHate MODEL SHOWS THE BEST PERFORMANCE (BOLD)

TABLE V

PERFORMANCE RESULTS ON IMBALANCED DATASETS. THE BEST RESULTS OVER EACH DATASET ARE SHOWN IN BOLD

performs the best in DS-2 and fBERT performs the best
in DS-4 (in terms of f-score). We achieve f-scores of
94%, 82%, 83%, 92%, and 93% in the balanced datasets,
respectively, and 92%, 56%, 85%, 79%, and 92% in the
imbalanced datasets, respectively. Among the other methods,
Mossie and Wang [33] and transformer-based language models
mostly perform the best, followed by some baseline models.
Table VI shows the training and validation accuracy (VA) of
BiCapsHate, in comparison to the other methods. Observe
that the proposed model completely outperforms the compared
methods over DS-5. We also outperform others over balanced
DS-1, balanced DS-2, and imbalanced DS-3 in terms of VA,
TA, and TA, respectively. Overall, we outperform in seven

instances, whereas fBERT, HateBERT, ToxicBERT, and BERT
outperform in 6, 2, 1, and 4 instances respectively. We are able
to achieve up to 95% training accuracy (TA) and 92% VA. The
results in the table show that there is a gap between TA and
VA of our model as well as all the compared methods, over
DS-2. It indicates that all the models overfit in this dataset.
We believe that this behavior is due to the nature of the dataset.

Another interesting observation is that RNNs and their
variants such as LSTM and GRU also show good performance
because of their sequence learning properties. Note that
the datasets DS-1, DS-2, DS-4, and DS-5 contain short
length tweets, whereas DS-3 contains long texts of news
comments. The overall best performance of BiCapsHate
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TABLE VI

COMPARISON IN TERMS OF TA AND VA ON BALANCED AND IMBALANCED DATASETS. THE BEST RESULTS OVER EACH DATASET ARE SHOWN IN BOLD

TABLE VII

PERFORMANCE RESULTS FOR MULTICLASS CLASSIFICATION.

BiCapsHate SHOWS THE BEST PERFORMANCE (BOLD)

across all these datasets in both balanced and imbalanced
forms demonstrates its efficacy on both short and long texts
for HS detection.

The transformer-based language models pretrained on offen-
sive contents—fBERT, HateBERT, ToxicBERT—are recently
developed highly effective state-of-the-art models, specific to
HS detection. They require high-end hardware resources for
computation. On the contrary, in addition to performing the
best, BiCapsHate does not have such high requirements.
It can be run on a machine without GPU.

E. Experimental Results for Multiclass Classification

We also evaluate the performance of BiCapsHate for
multiclass classification of hate and related speeches over
DS-1, DS-2, and DS-5 (other datasets are binary labeled).
Table VII presents our multiclass classification results. In this
set up, BiCapsHate outperforms BERT by significant
margins.

F. Ablation Study

The main purpose of our ablation study is to exam-
ine the componentwise performance of BiCapsHate.

TABLE VIII

ABLATION STUDY OF BiCapsHate MODEL. BiCapsHate SHOWS ITS

BEST PERFORMANCE (BOLD) WITH ALL THE LAYERS

Table VIII shows the overall findings of this study
on all balanced and imbalanced datasets in terms of
f-score. Observe that BiCapsHate, in its complete form,
consistently outperforms all the other alternatives with reduced
components. Excluding the capsule networks degrades the
f-score significantly. It demonstrates the critical role of capsule
networks in learning the contextual information in different
orientations of the input text. Excluding the auxiliary features
degrades the f-score. It demonstrates the important role of
our well-informed model by external knowledge including the
Hatebase lexicon. Excluding the stacked BiLSTM network
degrades the f-score. In line with the current state-of-the-
art methods using sequence modeling networks such as
RNN, LSTM, and GRU, stacked BiLSTM is obviously one
of the most important components learning the contextual
sequences in both forward and backward directions. Excluding
the attention network degrades the f-score. It shows that
attention is also another important component, highlighting
the important HS-related words.

G. Effects of Parameters

This section presents the effects of parameters.
1) Number of BiLSTM Hidden Units: Choosing the total

number of hidden units is important in terms of analyzing
the classification performance of a deep learning-based model.
While presenting the overall performance results earlier in
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Fig. 3. Effects of number of BiLSTM hidden units. (a) F-score on balanced
datasets. (b) F-score on imbalanced datasets.

Fig. 4. Effects of optimization algorithms. (a) F-score on balanced datasets.
(b) F-score on imbalanced datasets.

Fig. 5. Effects of activation functions. (a) F-score on balanced datasets.
(b) F-score on imbalanced datasets.

Section V-D, we considered a total of 128 BiLSTM hidden
units. Fig. 3 shows the effects of varying the number of
BiLSTM hidden units from 64 to 256 on our classification
results on balanced and imbalanced datasets, respectively.
Observe that 128 hidden units in BiLSTM perform remarkably
better across all datasets.

2) Optimization Algorithms: The main function of opti-
mization algorithm is to minimize the loss function in order to
produce good results. Fig. 4 shows the effects of three different
optimization algorithms (Adadelta, Adam, and SGD) on our
classification results on balanced and imbalanced datasets,
respectively. Observe that Adam is comparatively better than
Adadelta and SGD on both balanced and imbalanced datasets.
This is because of the bias-correction in Adam toward the end
of optimization as gradients becomes sparser.

3) Activation Functions: The role of an activation function
is to introduce nonlinearity into the output of a neuron
and check whether a neuron should be activated or not.
Fig. 5 shows the effect of two different activation functions
(sigmoid and softmax) on our classification results on balanced
and imbalanced datasets, respectively. Observe that sigmoid
performs better as compared with softmax across all the
datasets. This is because the proposed model works on a binary
class problem.

4) Number of Routing Iterations in Capsule Networks:
In capsule networks, the routing algorithm convergence is
used to connect capsules in consecutive levels, where the

Fig. 6. Effects of number of routing iterations. (a) F-score on balanced
datasets. (b) F-score on imbalanced datasets.

Fig. 7. Effects of number of capsules. (a) F-score on balanced datasets.
(b) F-score on imbalanced datasets.

Fig. 8. Effects of dimension of capsules. (a) F-score on balanced datasets.
(b) F-score on imbalanced datasets.

information is passed from the lower level capsule to the
higher level capsule, if it agrees with its input. Fig. 6 shows
the effects of the number of routing iterations from 1 to 5 on
our classification results on balanced and imbalanced datasets,
respectively. Observe that the most suitable number of routing
iterations is 3.

5) Number of Capsules: A capsule network is formed
by a number of capsules that help in encoding the spatial
information. Fig. 7 shows the effects of varying the number
of capsules from 3 to 7 on our classification results on the
balanced and imbalanced datasets, respectively. Observe that
with five capsules, the proposed model shows the optimal
performance over the datasets.

6) Dimension of Capsules: The dimension of a capsule
indicates the length of the output vector of a capsule. Fig. 8
shows the effects of varying the dimension of capsules
from 2 to 32 on our classification results on the balanced
and imbalanced datasets, respectively. Observe that 8 is the
most suitable value for capsule dimension. It implies that
both undersized and oversized dimensions of capsules may
adversely affect the performance.

H. Qualitative and Error Analysis

We conduct a qualitative analysis of the proposed model
by analyzing the predictions on some sample instances, few
shown in Table IX. The first sample given in the table shows
that the hateful content is correctly predicted as hateful by
our model because it has explicit offensive words such as
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TABLE IX

SAMPLE INSTANCES FOR ANALYSIS

ghetto and niggaz, used in negative context. Also observe from
the second sample that normal text may also contain some
offensive words but used to present information rather than
to demean others. The correct predictions of such context-
dependent samples show that our model effectively captures
the contextual usage of hateful and offensive words.

We also analyze some sample instances that are misclassi-
fied by the proposed model. The third row of Table IX has
a sample hateful labeled tweet that our model classifies as
normal by underestimating its hateful nature. This might be
because it contains “chink,” which is an offensive word but
generally used in nonoffensive context. The last row has a
sample normal tweet that the model misclassifies as hateful.
It is probably because the user expresses strong emotional
outburst containing hateful (often) words such as “gun” and
“retarded.”

I. Findings and Limitations

In this research, we developed BiCapsHate, which is
an advanced deep learning model that generally outperforms
the existing methods. It does not require high-end hardware
resources for its computation. It can be executed on a CPU
machine with even 8-GB RAM. On the contrary, state-of-
the-art pretrained language models such as BERT, fBERT,
HateBERT, and ToxicBERT are highly complicated and
require atleast a GPU machine. Another interesting finding is
that BiCapsHate shows good performance over both short
and long texts. Moreover, it is effective for both binary and
multiclass datasets.

Though BiCapsHate is highly effective for HS detection
in English texts, it has some limitations as well. First, it has
been evaluated only on English datasets. Its adaptation over
multilingual or code-mixed data is a promising future research.
Second, it is not suitable for HS detection from multimodal
data. Lastly, as discussed in Section V-H, the proposed
model does not always capture the offensive words with mild
intensity of hate or low hateful tone.

VI. CONCLUSION

In this article, we proposed a novel deep learning model,
called BiCapsHate, for HS detection on OSM platforms.

The model consists of five advanced layers of DNNs, including
the input, embedding, BiCaps, dense, and output layers. Each
layer is dedicated to capture specific properties of HS. With
the help of bidirectional capsule networks, the BiCaps layer
learns the linguistic contextual information with respect to
different orientations in both forward and backward directions
of the input text. The rich set of hand-crafted shallow and
deep auxiliary features including the Hatebase lexicon
further enriches the layer. In our extensive experiments, the
proposed model generally outperformed the existing state-
of-the-art methods. It can be very useful to aid the content
moderation systems of OSM platforms. Furthermore, unlike
its competitors, it does not have a requirement of high-end
hardware resources for computation. This research leads to
the future research directions of generalization of BiCapsHate
for other text classification tasks, particularly the ones that
cannot afford high-end hardware resources. It is also worth
investigating its adaptation for HS detection in multilingual
social posts.
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